Патенты сопряжения моста с насыпью. Методические рекомендации методические рекомендации по проектированию и строительству сопряжений автодорожных мостов и путепроводов с насыпью. Сопряжение моста с насыпью

Министерство строительства и эксплуатации автомобильных дорог Молдавской ССР

ИНСТРУКЦИЯ

ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ УСТОЕВ АВТОДОРОЖНЫХ МОСТОВ И ПУТЕПРОВОДОВ, ОБСЫПАННЫХ МЕСТНЫМИ ГРУНТАМИ ПРИМЕНИТЕЛЬНО К УСЛОВИЯМ МОЛДАВСКОЙ ССР

ВСН 5-79

Минавтодор МССР

Утверждены
Министерством строительства и эксплуатации автомобильных дорог Молдавской ССР
"19" октября 1978 г. № 341

Кишинев 1978

ПРЕДИСЛОВИЕ

Настоящая Инструкция разработана впервые, в ней отражены особенности расчета устоев, обсыпанных местными грунтами, конструирования откосов конусов и сопряжения мостов с насыпью, технологии производства работ по устройству сопряжений моста и укреплению откосов конусов.

Инструкция разработана в отделении Искусственных сооружений всесоюзного научно-исследовательского института транспортного строительства (ЦНИИС) Минтрансстроя (к.т.н. Рыбчинский Д.П., к.т.н. Глотов Н.М., д.т.н. Луга А.А.) при участии институтов "Сибгипротранс" (инж. Карманов Ф.Г.), "Молдгипроавтодор " (инженеры Штерн А.Я., Усачев Е.Т., Здерчук А.И., Сухарев И.К.), треста "Оргдорстрой" (инж. Лисайчук А.И.) и "Союздорпроекта" (инж. Хазан И.А.).

Разделы Инструкции по конструированию сопряжений моста с насыпью и технологии их устройства составлены на основе типового проекта "Сопряжений автодорожных мостов и путепроводов с насыпью" (Союздорпроект, сер. 8.503-41, 1977) с учетом "Методических рекомендаций по проектированию и строительству сопряжений автодорожных мостов и путепроводов с насыпью" (СоюздорНИИ, 1975).

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1. Настоящая Инструкция предназначена для использования организациями, осуществляющими проектирование и строительство опытных автодорожных мостов и путепроводов на территории Молдавской ССР.

1.2. В Инструкции отражены специфические особенности расчета устоев, конструирования откосов конусов и сопряжения мостов с насыпью, технологии производства работ по устройству сопряжения моста и укреплению откосов конусов.

1.3. При проектировании устоев и сопряжений с насыпью автодорожных мостов и путепроводов следует руководствоваться, кроме указаний настоящей Инструкции, соответствующими требованиями глав СНиП по проектированию мостов и труб; оснований зданий и сооружений; свайных фундаментов; "Технических условий проектирования железнодорожных, автодорожных и городских мостов и труб"; государственных стандартов.

В период производства работ по постройке мостов и путепроводов следует выполнять требования главы СН иПпо технике безопасности в строительстве.

1.4. Мосты и путепроводы, возводимые в районах с сейсмичностью 7 баллов и выше, следует проектировать с учетом указаний главы СНиП на строительство в сейсмических районах и соответствующих разделов настоящей Инструкции.

2. РАСЧЕТЫ

Общие указания

2.1. Расчеты несущей способности и деформативности грунтовых оснований и фундаментов устоев мостов и путепроводов следует производить по методу предельных состояний, руководствуясь указаниями главы СНиП по проектированию мостов и труб.

2.2. Нагрузки и воздействия при расчете оснований и фундаментов устоев должны приниматься в соответствии с указаниями главы СНиП по проектированию мостов и труб.

2.3. Номенклатуру грунтов следует принимать в соответствия с главой СНиП на проектирование оснований зданий и сооружений.

2.4. Для обсыпки устоев (засыпка за ними и отсыпка конусов) рекомендуется использовать грунт, из которого отсыпают подходные участки насыпи.

2.5. Значения физико-механических характеристик грунтов основания (угол внутреннего трения φ , объемный вес γ, сцепление С и др.) следует определять на основании данных инженерно-геологических изысканий лабораторными и полевыми исследованиями с учетом природного состояния грунта и возможных его последующих изменений при строительстве и эксплуатации сооружения.

2.6. Для определения расчетных значении сдвиговых характеристик грунтов, используемых дли отсыпки конусов и примыкающих к устоям участков насыпи, необходимо отобрать пробы с нарушенной структурой (по технологии отбора монолитов), по которым в лабораторных условиях определяют оптимальную влажность и максимальную плотность по методу стандартного уплотнения. Затем изготовляют образцы путем трамбования и формовки грунта при оптимальной влажности и требуемой плотности, устанавливаемой настоящей Инструкцией в зависимости от глубины расположения данного слоя от поверхности насыпи.

При отборе проб и испытании грунтов, а также для оценки местной устойчивости откосов, следует пользоваться соответствующими разделами "Методических рекомендаций по обеспечению устойчивости откосов земляного полотна при проектировании и строительстве автомобильных дорог в условиях Молдавской ССР", разработанных СоюздорНИИ.

2.7. Горизонтальное давление грунта на устои от временной вертикальной нагрузки следует определять в соответствии с указаниями действующих нормативных документов в части, касающейся проектирования автодорожных мостов и путепроводов.

Давление грунта на устои от воздействия его собственного веса надлежит определять согласно указаниям пп. 2.8 - .

Горизонтальное давление грунта на устои

где - горизонтальное давление

грунта, тс/м 2 ;

γ н - нормативное значение объемного веса грунта, тс/м 3 ;

φ н - нормативное значение угла внутреннего трения грунта, град.;

С н - нормативное значение внутреннего сцепления грунта, тс/м 2 ;

Н - высота расчетного слоя грунта, м, считая от его основания до верха дорожного покрытия;

В - ширина устоя в плоскости задней грани, на которую действует (распределяется) горизонтальное давление, м.


(3)

где - горизонтальное давление дренирующего грунта, тс/м 2 в уровне подошвы слоя;

h д - высота слоя дренирующего грунта, м, считая от его основания до верха дорожного покрытия.

2.14. Нормативное значение горизонтального давления грунта Е 2 на устой со стороны пролета следует учитывать в виде активного давления.

2.15. Равнодействующая нормативного значения горизонтального давления Е 2 (тс) на устой по передний грани (см. ) от собственного веса насыпного связного грунта (выше естественной поверхности) надлежит определять по формуле

(4)

где - горизонтальное давление грунта, тс/м 2 ;

α - угол наклона образующей конуса к горизонту и уровне естественной поверхности грунта, град.;

Н 2 - расстояние от естественной поверхности грунта до образующей конуса по вертикали, проходящей по передней грани устоя, м;

Z 2 - глубина, до которой отсутствует давление грунта, м.

2.20. Горизонтальное давление грунта на переднюю грань обсыпного устоя от веса конуса (рис. 2, а и б) в уровне естественной поверхности условно принимается равным 2/3 от величин, приведенных в , где за Н принимается расстояние Н 2 от естественной поверхности грунта до образующей конуса по вертикали, проходящей по передней грани массивного фундамента или плиты свайного фундамента.


п/п

Грунты

Нормативное значение горизонтального давления е Н в уровне естественной поверхности грунта (тс/м 2 )

Плотные пески, гравий, галька, суглинки и глины полутвердой

0,35 γ Н n 1 Н

Пески и супеси средней плотности, тугопластичные суглинки и глины

0,50 γ Н n 1 Н

Пески и супеси, рыхлые пылеватые пески, м ягкопластичные глины и суглинки

0,65 γ Н n 1 Н

Суглинки, глины и илы текучепластичные и текучей консистенции

0,75 γ Н n 1 Н

Значение коэффициента п 1

Ширина насыпи поверху, м

Высота насыпи, и

Примечания: 1. При ширине насыпи поверху менее 10 м значение коэффициента п 1 следует принимать для ширины 10 м.

2. Для промежуточных значения высот и ширин насыпи значение коэффициента п 1 определяют по интерполяции.

2.22. Если вершина эпюры избыточного горизонтального давления располагается ниже фундамента, то ее низ следует ограничивать уровнем его подошвы.

2.23. Величины равнодействующих избыточного горизонтального давления грунта, действующих на фундамент ниже подошвы плиты, рекомендуется приводить к уровню подошвы, взяв отношение суммы моментов всех этих сил относительно условной точки С и С 1 (), или же относительно уровня острия свай, если вершина эпюры избыточного горизонтального давления грунта располагается ниже фундамента - к расстоянию от этой условной точки до подошвы плиты.

2.24. При наличии оставленного в грунте шпунтового ограждения вокруг фундамента за его ширину принимают ширину ограждения.

2.25. Расчет опор па устойчивость против скольжения необходимо производить по формуле:

где ΣЕ i - сумма всех активных сил, действующих параллельна проверяемому сечению, тс;

f - коэффициент трения, принимаемый согласно п.2.26;

G L - нормальные составляющие всех активных сил, перпендикулярные проверяемому сечению, тс;

т ≤ 0,8 - коэффициент условий работы.

2.26. Проверку устойчивости опор против скольжения следует производить с учетом взвешивающего действия воды при наивысшем ее уровне при следующих значениях коэффициентов трения подошвы фундамента по грунту:

для глин и скальных грунтов с омыливающейся поверхностью (глинистые известняки, глинистые сланцы и т.п.):

при затоплении водой0,1

во влажном состоянии0,23

в сухом состоянии0,30

для суглинков и супесей0,30

для песков0,40

для гравелистых и галечниковых грунтов0,50

для скальных пород с неомыливающейся поверхностью0,60

Глубокий сдвиг устоев совместно с грунтом по круглоцилиндрической поверхности

2.27. Устои, расположенные на крутых склонах, а также устои с подходной насыпью высотой более 10 м в случае нахождения под несущий пластом слоя слабого глинистого грунта или прослоек водонасыщенного грунта, подстилаемого глиной, следует рассчитывать на устойчивость против глубокого сдвига (смещение фундамента совместно с грунтом по круглоцилиндрической поверхности скольжения).

2.28. Радиус и положение центра наиболее опасной круглоцилиндрической поверхности скольжения при расчете определяет методом попыток. Поверхность скольжения не должна пересекать тело фундамента, за исключением случаев проверки устойчивости свайных фундаментов, в которых поверхность скольжения следует также принимать пересекающей сваи (при наличии толщи слабого грунта в ее пределах).

2.29. Расчет против скольжения по круглоцилиндрической поверхности производится следующим образом.

Для принятой произвольной, но вероятной цилиндрической поверхности скольжения радиуса R определяется отношение момента сдвигающих сил М сд относительно центра вращения О () к предельному моменту удерживающих сил относительно того же центра. При определении предельного момента М ПР сопротивление свай скольжению сползающего массива грунта по круглоцилиндрической поверхности, пересекающей сваи, не учитывается, что обеспечивает дополнительный запас устойчивости. Эти моменты следует определять по формулам:

(7)

где Т i = G l . sinα i - сдвигающая составляющая веса i - o й части массива, тс;

G l - вес i - ой части массива, заключенной между двумя вертикальными плоскостями, тс; при поверхности сдвига, пересекающей сваи, вес устоя и давление от веса пролетного строения не учитывается; в случае устройства фундамента мелкого заложения (в котловане) эти силы следует учитывать;

Если поверхность скольжения в пределах i -го участка проходит по водопроницаемому слою (песку, супеси) или по границе водопроницаемого и водонепроницаемого слоев, то вес G i следует определять с учетом гидростатического взвешивания грунта, расположенного ниже уровня воды при расчетном паводке;

Суммарное горизонтальное оползневое давление на вертикальную плоскость, проходящую по задней грани устоя определяют по формуле:

(9)

где T i = G i . sin α i - сдвигающая сила, тc ;

U i = N i . f i - удерживающая сила, тс;

G i - сила, равная расчетному весу i - го участка грунтового массива, тс;

N i = G i . cos α i - нормальная составляющая силы G i к поверхности скольжения, тc ;

α i - угол наклона к горизонту (в пределах i -го участка) кровли грунтового или скального пласта, по которому возможно сползание вышерасположенного грунтового массива, град.;

f i - коэффициент трения между подошвой i - го участка и кровлей пласта, по которому возможно сползание, принимается по табл. 3;

S i - горизонтальная сейсмическая c ила, действующая на грунтовав массив, тс, принимаемая по .


Коэффициент α 2

Глубина заложения подошвы фундамента в м

Коэффициент α 2 при высоте Н 2 в м

0,04

0,05

0,06

0,03

0,01

0,05

0,02

0,03

0,04

0,01

0,02

0,03

0,01

0,02

0,01

Учет сейсмических воздействий

2.39. Указания настоящего раздела распространяются на проектирование устоев постоянных мостов и путепроводов на автомобильных дорогах общей сети I , II , III и IV категории, автомобильных дорогах промышленных предприятий I и II категории, скоростных городских дорогах и на магистральных улицах общегородского и районного значения при расчетной сейсмичности 7, 8 и 9 баллов, возводимых в районах с сейсмичностью 7, 8 и 9 баллов.

2.40. Сейсмичность района или пункта следует принимать согласно указаниям главы СНиП по строительству в сейсмических районах в соответствии с разработанной на их основе картой сейсмического районирования (рис. 8).

2.41. Уточнение сейсмичности площадки строительства в зависимости от геологических условий производится на основании карт сейсмического микрорайонирования.

Сейсмичность площадки строительства допускается уточнять на основании общих инженерно-геологических и гидрогеологических изысканий согласно (по согласованию с инстанцией, утверждающей проект).

2.42. Устои моста (путепровода) следует проектировать, исходя из расчетной сейсмичности сооружении, принимаемой по .

2.43. Расчет устоев мостов (путепроводов) с учетом сейсмического воздействия следует производить по первому предельному состоянию.

2.44. Конструкция устоев, проектируемых для строительства в сейсмических районах, должна проверяться расчетами:

на основное сочетание нагрузок в соответствии с требованиями главы СНиП на проектирование мостов и труб;

на особое сочетание нагрузок с учетом сейсмического воздействия в соответствии со СНиП на проектирование мостов и труб.

2.45. Величины нагрузок и коэффициентов перегрузки следует принимать в соответствии с действующими нормами проектирования автодорожных мостов.

2.46. В расчетах устоев с учетом сейсмических воздействий к величинам расчетных нагрузок необходимо вводить коэффициенты сочетания п 0 :

для постоянных нагрузок и воздействий - 1;

для вертикальных временных подвижных нагрузок (без динамического коэффициента) - 0,35.

Сейсмичность площадки строительства в баллах в зависимости от инженерно-геологических и гидрогеологических условий

Грунта

Сейсмичность района в баллах

1. Скальные грунты всех видов, кроме выветрелых

2. Крупнообломочные грунта при глубине уровня грунтовых вод h ≥ 15 м

3. Скальные грунты выветрелые и крупнообломочные грунты при глубине уровня грунтовых вод 6 ≤ h ≤ 10 м

4 Песчаные и г линистые грунты при h ≥ 8 м

5. Скальные грунты выветрелые и крупнообломочные грунты при глубине уровня грунтовых вод h ≤8 м

6. Песчаные и глинистые грунты при h ≤ 4 м

Примечания : Уровень грунтовых вод h определяется от планировочной отметки.

2. При положении уровня грунтовых вод h соответствующей промежуточным значениям, указанными в табл. 6, грунты должны приводиться к категории сейсмических свойств (I или II или III ) в зависимости от особенностей рельефа местности, условий залегания пластов грунта, степени выветрелости грунтов, близости плоскостей сброса и других подобиях факторов.

Расчетная сейсмичность мостов (путепроводов)

Сооружение

Расчетная сейсмичность сооружения при сейсмичности площадка строительства в бандах

1. Большие мосты на автомобильных дорогах общей сети I и II категорий, скоростных городских дорогах и магистральных улицах общегородского значения

2. Большие мосты на автомобильных дорогах общей сети III , IV категории и магистральных улицах районного значения, а также средние мосты на автомобильных дорогах общей сети I и II категории, скоростных городских дорогах и магистральных улицах общегородского значения

3. Средние мосты на автомобильных дорогах общей сети III , IV категории, магистральных улицах районного значения и на дорогах промышленных предприятий, малые мосты на дорогах всех категорий

Примечания: 1. Указанные в п. 1, табл. 7 большие мосты в районах с сейсмичностью 9 баллов и особо ответственные большие мосты на дорогах прочих категорий, в районах с сейсмичностью 8 и 9 баллов должны возводиться с дополнительными антисейсмическими мероприятиями по специальным проектам.

2. В тех случаях, когда разрушение перечисленных в п. 8, табл. 7 сооружений может быть сопряжено с длительным перерывом давления, расчетная сейсмичность этих сооружений (кроме деревянных мостов) должна назначаться по п. 2, табл. 6.

Для сейсмических нагрузок, учитываемых совместно с постоянными нагрузками (воздействиями), коэффициент сочетания принимается равным 1, а для сейсмических нагрузок, учитываемых совместно с постоянными нагрузками (воздействия) и с вертикальными временными подвижными нагрузками, коэффициент сочетания принимается равным 0,8.

2.47. Сейсмические силы принимают действующими горизонтально в направлениях вдоль и поперек оси моста. Действие сейсмической нагрузки в обоих направлениях учитывается раздельно.

2.48. Расчетные сейсмические нагрузки, действующие на устои, следует определять по указаниям главы СНиП на строительство в сейсмических районах ивключать их в особые сочетания нагрузок.

2.49. Воздействий сейсмических нагрузок следует учитывать совместно со всеми постоянными нагрузками и воздействиями (принимая нормативные их величины), а также с временными подвижными вертикальными нагрузками с учетом указанных выше коэффициентов.

Расчеты с учетом сейсмических воздействий необходимо производить как при наличии временной подвижной вертикальной нагрузки на пролетных строениях, так и без нее. Для сооружений на дорогах промышленных предприятий расчеты допускается производить без учета временной подвижной нагрузки.

Сейсмические нагрузки учитывают совместно с нагрузками НК-80 и НГ-80, с временной вертикальной нагрузкой на тротуарах и с нагрузкой от торможения.

2.50. Полное горизонтальное давление (статическое совместно с сейсмическим) грунта насыпи (связного или несвязного) на заднюю грань устоя е с рекомендуется определять по формуле

(12)

где е - горизонтальное статическое давление грунта (связного или несвязного), тс/м 2 ;

К с - коэффициент сейсмичности, принимаемый по табл. 8;

φ Н - нормативное значение угла внутреннего трения грунта, град.

2.51. Равнодействующую полного горизонтального давления грунта насыпи (связного или несвязного) на заднюю грань устоя Е С рекомендуется определять по формуле

(13)

где Е - равнодействующая нормативного значения горизонтального статического давления грунта насыпи (связного или несвязного) на заднюю грань устоя, тс, определяемая по .

Остальные обозначения те же, что и в ф. 12.

2.52. Сейсмическое горизонтальное давление грунта конуса на переднюю грань устоя не учитывают.

2.53. Приведенными в пп. 2.50 ÷ 2.51 формулами можно пользоваться при определении давления грунта на устой, если его грани наклонены к вертикали не более ± 10°.

2.54. Избыточной полное горизонтальное давление (статическое совместно с сейсмическим) грунта на фундамент от веса подходной насыпи в уровне естественной поверхности рекомендуется определять по формуле

(14)

где Е Н - избыточное горизонтальное статическое давление грунта, тс/м 2 , на фундамент от веса подходной насыпи в уровне естественной поверхности, определяемое по ;

К с - коэффициент сейсмичности, принимаемый по ;

φ Н - нормативное значение угла внутреннего трения грунта, окружающего фундамент, град.

Построение эпюры полного давления ведется аналогично построению эпюр е н п ри статическом давлении.

2.53. В расчете устоев, расположенных в районах с сейсмичностью 7, 8 и 9 баллов, на устойчивость против глубокого сдвига совместно с грунтом по круглоцилиндрической поверхности скольжения, а также на локальный оползневой сдвиг следует учитывать действующие горизонтальные сейсмические нагрузки (см. и ).

Горизонтальную сейсмическую нагрузку S i , действующую на устой и грунтовый массив, рекомендуется определять по формуле

S i = G i K C m K , ()

где G i - вес элемента устоя или грунтового массива, т c ;

K C - коэффициент сейсмичности, принимаемый по ;

т К - 1,5 - коэффициент, учитываемый при вычислении сейсмической нагрузки, действующей на устой;

т К = 1 - коэффициент, учитываемый при вычислении сейсмической нагрузки действующей на грунтовый массив.

В расчетах устоев принимается, что сейсмическая нагрузка S i направлена в сторону пролета.

Момент сдвигающих сил следует определять по формуле

(16)

где S i - горизонтальная сейсмическая сила, действующая на элементы устоя и грунтового массива, тс;

- плечо силы S i относительно центра вращения, м.

Остальные обозначения те же, что и в .

2.56. Несущую способность по грунту фундаментов мелкого заложения следует проверять пользуясь условием

(17)

где σ max -наибольшее расчетное давление на основание под подошвой фундамента, т/м 2 ;

N и М - расчетные значения нормальной силы, тс, и момента, тс . м, в уровне подошвы фундамента от заданной комбинация нагрузок, включая собственный вес фундамента и грунта на уступах;

Р и W - площадь, м 2 , подошвы фундамента и ее момент сопротивления, м 3 , относящийся к наиболее нагруженному ребру;

т с - сейсмический коэффициент условий работы, принимаемый равным;

т С = 1,2 для глинистых грунтов с показателем консистенции J L ≤ 0.4, скальных пород, плотных грунтов, крупнообломочных и песчаных грунтов;

т С = 0,7 для глинистых грунтов с показателем консистенции J L > 0,75 и рыхлых водонасыщенных песков;

т = 1 для всех остальных грунтов;

R - расчетное значение сопротивления грунтового основания осевому сжатию, тс/м 2 , определяемое по указаниям п.682 СН 200-62.

Если (где W " - момент сопротивления подошвы фундамента, относящийся к менее нагруженному ребру), то наибольшее напряжение в грунте под фундаментом следует определять по формуле

(18)

где α - д лина прямоугольной в плане подошвы фундамента (размер в плоскости действия сил), м;

в - ширина подошвы фундамента, м.

2.57. В расчетах на устойчивость фундаментов мелкого заложения против опрокидывания и скольжения коэффициент условий работы следует принимать т кр = 1.

2.58. Расчет свайных фундаментов устоев или устоев из свай, свай-оболочек, свай-столбов должен включать проверки:

а) несущей способности свай (столбов, оболочек) по грунту на вертикальную сжимающую и выдергивающую нагрузку;

б) несущей способности свай (столбов, оболочек) и фундаментной плиты (ригеля) по материалу;

в) устойчивости свай (столбов, оболочек) по условию ограничения давления, оказываемого на грунт боковой поверхностью сваи.

2.59. Н есущую способность Р 0 забивной висячей сваи, воспринимающей осевую сжимающую нагрузку в условиях сейсмического воздействия, следует определять по формуле

()

где К - коэффициент однородности грунта, принимаемый равным 0,7;

т - коэффициент условий работы, принимаемый в зависимости от числа свай в фундаменте: при числе свай до 5 шт. т = 0,8, при числе свай от 6 до 10 шт. т = 0,9, при числе свай большем 10 шт. т = 1;

т c , т ci - коэффициенты условий работы, учитывающие влияние c ей c мических колебаний на несущую способность грунта соответственно под нижним концом и по боковой поверхности сваи в i слое грунта, принимаемые по табл. 9;


Таблица 9

Расчетная сейсмичность сооружений в баллах

Значения коэффициентов

т с

m ci

Песчаные грунты плотные и средней плотности маловлажные и средней влажности

Глинистые грунты твердой, полутвердой и тугопластичной консистенции

Песчаные грунты плотные и средней плотности

Глинистые грунты консистенции

маловлажные и средней влажности

водонасыщенные

твердой, полутвердой и тугопластичной

мягкопластичной

текучепластичной

0,91

0,95

0.95

0,90

0,95

0,85

0,75

0,85

Q .9 Q

0,85

0,80

0,90

0,80

0,70

0,75

0,85

0,75

0,70

0,85

0,70

0,60

Примечание . Для скальных и крупнообломочных грунтов принимают m с независимо от расчетной сейсмичности.


R H - нормативное значение сопротивления грунта под нижним концом свая, тс/м 2 , определяемое по указаниям главы СНиП на проектирование свайных фундаментов;

F - площадь опирания на грунт, сваи, м 2 , принимаемая по площади поперечного сечения сваи брутто;

U - периметр поперечного сечения сваи, м;

- нормативное значение сопротивления i - го слоя грунта основания по боковой поверхности сваи, тс/м 2 , определяемое по указаниям главы СНиП на проектирование свайных фундаментов, учитываемое с глубины h ≥ 5 м, считая от естественной поверхности грунта;

l i - толщина i - го слоя грунта, соприкасающегося с боковой поверхностью сваи, м;

h - глубина, до которой не учитывается сопротивление грунта по боковой поверхности сваи, м;

2.60. Несущую способность сваи, работающей на выдергивание в сейсмических условиях Р В0 при глубине погружения l > 5 м, необходимо определять по формуле

(20)

где т - коэффициент условий работы, принимаемый т = 0,8.

Остальные обозначения те же, что и в .

2.61. Несущую способность свай (столбов, оболочек) и фундаментной плиты (ригеля) по материалу на совместное действие расчетных усилий следует проверять в соответствии с требованиями главы СНиП на проектирование бетонных и железобетонных конструкций и Указаний СН 363-67.

2.62. Проверку устойчивости сваи (столбец оболочки) по условию ограничения давления, оказываемого на грунт боковой поверхностью сваи, рекомендуется производить в соответствии с п. 6 приложения главы СНиП по проектированию свайных фундаментов, принимая значения расчетного угла внутреннего трения для несвязных грунтов пониженными на величину Δφ , равную при расчетной сейсмичности 7 баллов - 2°, 8 баллов - 4° и 9 баллов - 7°.

Расчет на устойчивость производить не требуется для свай с размерами сторон (диаметром) поперечного сечения в ≤ 0,6 м, погруженными на глубину более 10 . в за исключением случаев погружения их в рыхлые пески.

2.63. Несущую способность сваи, воспринимающую вертикальную нагрузку в условиях сейсмических воздействий Р С , при использовании результатов полевых испытаний следует определять по формуле

где Р 0 и Р - значения несущей способности сваи, воспринимающей вертикальную нагрузку, вычисленные соответственно с учетом и без учета сейсмических воздействий;

Р нс - несущая способность сваи, тс, определенная по результатам полевых испытаний динамической или статической нагрузкой, либо по данным статического зондирования грунта.

2.64. При определении сейсмической нагрузки на устой со свайным (столбчатым) фундаментом допускается принимать сваи (столбы, оболочки) условно невесомыми, а 25% их веса на участке от низа плиты ростверка (насадки) до уровня жесткой заделки в грунте добавлять к весу плиты ростверка (насадки).

2.65. Подферменники (оголовки) устоев следует рассчитывать на усилия, передаваемые анкерами, устанавливаемыми для закрепления опорных частей.

3. КОНСТРУИРОВАНИЕ

Общие указания

3.1. Для мостов и путепроводов, расположенных в несейсмических районах, могут быть использованы любые конструкции устоев из числа, применяемых в настоящее время. Рекомендуется применять свайные устои козлового типа, сваи которых погружают предварительно отсыпанные конуса и примыкающие к ним части отходов.

3.2. Конструкции фундаментов устоев и сопряжения их с насыпью в несейсмических районах следует назначать, руководствуясь действующими нормами проектирования автодорожных мостов, главы СНиП по проектированию мостов и труб и соответствующими типовыми проектами.

3.3. Конструирование устоев и сопряжения их с насыпью для сейсмических районов следует осуществлять, руководствуясь указаниями пп. 3.4 ÷ 3.31.

Устои

3.4. Указания настоящего подраздела относятся к конструированию устоев мостов и путепроводов, проектируемых для сейсмических районов.

3.5. Основанием для фундаментов устоев должны служить, как правило, скальные грунты, крупнообломочные грунты, плотные и средней плотности песчаные грунты, твердые, полутвердые и тугопластичные глинистые грунты.

Запрещается заложение подошвы фундамента устоя моста с расчетной сейсмичностью 9 баллов на водонасыщенных рыхлых и средней плотности песчаных грунтах.

3.6. Подошва фундамента должна быть, как правило, горизонтальной. Фундаменты с уступчатой подошвой допускается проектировать только на скальных породах.

3.7. Устои следует проектировать возможно более простых форм. По условиям сейсмостойкости предпочтительными является железобетонные монолитные или сборные конструкции устоев.

Применение бетонных устоев с проемами, обратными стенами и подрезанной задней гранью при расчетной сейсмичности 9 баллов не допускается, а при 7 и 8 баллах не рекомендуется.

3.8. Применение бетонных устоев в виде отдельно стоящих столбов при расчетной сейсмичности 7 и 8 баллов не рекомендуется, а при 9 баллах не допускается.

3.9. В обсыпных устоях с фундаментом из свай, оболочек или столбов подошву его плиты рекомендуется, как правило, располагать над естественной поверхностью грунтов независимо от их физико-механических свойств. Допускается плиту таких устоев располагать в грунтах природного сложения с характеристиками сжимаемости и прочности лучше, чем у грунтов, использованных для отсыпки подходных участков насыпи.

Все устои больших и средних мостов с плитой, расположенной над грунтом, следует проектировать только с наклонными сваями как вдоль, так и поперек моста.

Столбы и оболочки в устоях допускается использовать в вертикальном положении при условии проверки их горизонтальной жесткости и давления боковой поверхности на грунт.

3.10. Нижние концы оболочек и столбов необходимо заделывать в грунты, указанные в п. 3.5. Верх свай, оболочек или столбов следует объединять жесткой плитой, обеспечивающей их совместную работу.

3.11. В конструкции устоев следует проверять расчетом прочность свай (оболочек, столбов), их заделки в плиту и прочность плиты.

Сопряжение устоев с насыпью

3.12. Конструкция сопряжения устоя с подходными насыпями должна осуществляться с помощью переходных железобетонных плит.

3.13. Для плавного въезда автомобиля на мост при устройстве сопряжения его с насыпью необходимо:

а) обеспечить повышенную плотность грунтов земляного полотна по всей его высоте (коэффициент уплотнения грунтов при оптимальной влажности должен быть не менее 0,98 - 1,0);

б) создать надежный отвод поверхностных вод с покрытия и из тела насыпи с применением дренажных слоев под покрытием с устройством бортовых лотков и противофильтрационной защиты покрытия и обочин в пределах сопряжения;

в) выдержать, если возможно по условиям строительства дороги, земляное полотно до устройства постоянного покрытия не менее года, в течение которого происходит основные осадки тела иоснования насыпи;

г) уложить переходные плиты длиной (согласно п. 3.17) достаточной для перекрытия зоны образования местных осадок и для обеспечения плавного сопряжения проезжей части моста с дорожным покрытием.

3.14. Высоту насыпи около моста принимают исходя из гидравлических и конструктивных условий с соблюдением требований СНиП на проектирование автомобильных дорог о требуемой величине возвышения низа дорожной одежды над расчетным уровнем грунтовых поверхностных вод с 10 %-ной вероятностью превышения, а также над уровнем поверхности земли на участках с необеспеченным поверхностным стоком.

3.15. Конечную осадку уплотненного земляного полотна рекомендуется принимать в зависимости от вида грунта и высоты насыпи по табл. 10.

3.16. Конечную осадку основания насыпи для грунтов, уплотняющихся под воздействием веса насыпи, рекомендуется определять расчетом в соответствии с "Методическими указаниями по проектированию земляного полотна на слабых грунтах".

Таблица 10

Грунты насыпи

Осадка насыпи, %, при ее высоте, м

до 6

6 ÷12

12 ÷ 24

Глины

0,6 ÷ 0,8

1,0 ÷ 1,3

1,9 ÷ 2,2

Суглинки

Супеси

Через год после обсыпки земляного полотна осадку насыпи можно принимать 50 %, а основания – 75 % от полной.

Основанию дренирующей засыпки создается продольный в сторону пролета уклон (0,05) и двухскатный поперечный уклон (0,05).

3.24. Крутизну откосов конуса и примыкающей к устою части подходной насыпи следует назначать с учетом обеспечения устойчивости откосов, но не менее величин, указанных в табл. 13. В сейсмических районах крутизну откосов следует принимать на 1:0,25 положе крутизны откосов в несейсмичес ких районах.

Крутизна откосов конусов высотойвыше 12 м определяется расчетом.

Таблица 13

Вид грунтов

Несейсмический район

Район с сейсмичностью 7 баллов и выше

Наибольшая крутизна откосов при высоте насыпи (в м)до

В нижней части (до 6 м)

В верхней части (высотой до 6 м)

В нижней части (до 6 м)

Глинистые грунты, песок мелкий и пылеватый

1:1,5

1:1,5

1:1,75

1:1,75

1:1,75

1: 2

4.6. Грунт для отсыпки насыпи должен иметь оптимальную влажность.

В процессе производства работ не следует допускать переувлажнения грунтов и в дождливый период отсыпанный грунт необходимо немедленно разравнивать и уплотнять, придавая поверхности слоя уклон с целью обеспечения водоотвода. При интенсивных дождях отсыпку необходимо прекращать.

В жаркое время года отсыпку и уплотнение грунтов следует производить возможно быстро, не допуская его пересыхания.

4.7. Наименьший коэффициент уплотнения грунта (отношение наименьшей требуемой плотности грунта с максимальной при стандартном уплотнении) следует принимать равным 0,90.

Особенно тщательно необходимо уплотнять верхний слой (порядка 1,5 м) примыкающей к устою части подходной насыпи. Коэффициент уплотнения грунта должен быть не менее 0,98 - 1,0.

Более высокие требования к уплотнению предъявляются к грунтам высоких и подтапливаемых насыпей.

Технология устройства сопряжения моста с насыпью

4.8. В зависимости от особенностей конструкции устоев (козловые, столбчатые или стоечные со свайным или мелкого заложения фундаментом) последовательность работ по строительству сопряжений моста с насыпью может меняться.

При козловом (столбчатом) типе устоя нижнюю часть конуса и примыкающей к устою части подходной насыпи целесообразно отсыпать до погружения свай (столбов, оболочек) с послойным уплотнением до степени 0,98 - 1,0.

Высоту примыкающей части подходной насыпи и конуса (h пр ) принимают равной: при высоте насыпи Н нас = 3 ÷ 4 м h пр = Н нас - 2 м; при Н нас = 4 ÷ 6 м h пр . = Н нас. - 3 м. При Н нас > 6 м высота отсыпки определяется наличием копрового оборудования для погружения свай на проектную глубину.

После сооружения устоя подходы и конус отсыпают на всю высоту. Отсыпку ведут послойно с уплотнением до коэффициента 0,98 - 1,0. На расстоянии 2 м и более от устоя грунт уплотняют тяжелыми машинами, а вблизи и в стесненных условиях малогабаритными механизмами. При ручном уплотнении толщина слоев не должна превышать 10 - 15 см. Одновременно обсыпают и уплотняют гравийно-щебеночную подушку под лежень переходных плит.

Качество уплотнения грунта необходимо систематически контролировать.

4.9. После возведения подходных насыпей и конусов на проектную высоту дальнейшая последовательность работ зависит от типа покрытия (цементобетон или асфальтобетон).

При цементобетонном покрытии:

В пределах длины поверхностных переходных плит плюс 10 м устраивают временное покрытие из щебня или каменной мелочи, которое эксплуатируется в течение года;

Удаляют верхний загрязненный слой (или весь) временного покрытия; при необходимости досыпают основание дорожного покрытия и уплотняют его до 0,96 - 1,0;

Устраивают котлованы под переходные плиты и траншеи под опорный лежень;

Укладывают в траншеи лежень и в котлованах втрамбовывают щебень слоем 5 см;

После устройства щебеночной подготовки укладывают переходные и промежуточные плиты, устраивают постоянное покрытие с водоотводными лотками;

При асфальтобетонном покрытии:

Устраивают котлованы под переходные плиты и траншеи под опорный лежень;

Укладывают в траншеи лежень, в котлованах втрамбовывают щебень слоем 5 см и после устройства щебеночной подготовки укладывают переходные плиты;

Устраивают временное покрытие (на длине переходных плит плюс 10 м) из щебня или каменной мелочи, которое эксплуатируется в течение года;

Удаляют верхний загрязненный слой временного покрытия, при необходимости досыпают основание дорожного покрытия и уплотняют его до 0,98 - 1,0;

Устраивают постоянное покрытие с водоотводными лотками;

Срезают конусы до проектного очертания, укрепляют их и обочины.

4.10. Отсыпку подходной насыпи и конуса ведут послойно на всю ширину. Толщину слоев принимают в зависимости от используемых механизмов (приложение I к СНиП III -Д.5-73) и уточняют по результатам пробного уплотнения. На подходах толщина уплотняемых слоев (в плотном теле) не должна превышать 30 см, а в стесненных условиях (на конусе) - 10 - 15 см.

Отсыпка последующего слоя допускается только после разравнивания и уплотнения нижележащего слоя до требуемой плотности.

Конусы отсыпают увеличенных по отношению к проектному очертанию размеров (согласно п. 4.13).

4.11. При устройстве щебеночной подушки под лежень переходных плит и при укладке щебеночного основания под плиты особенно тщательно следует уплотнять щебень. Нижний слой щебня толщиной 5 см должен быть втрамбован в грунт.

Щебеночная подушка под лежень устраивается из фракционированного щебня по способу заклинки. Допускается применение гравийного материала с добавлением 30 – 50 % щебня.

4.12. Поверхностные переходные плиты укладывают одновременно с устройством покрытия, т.е. через год после возведения земляного полотна.

Полузаглубленные плиты укладывают в один год с возведением земляного полотна, а покрытие в пределах плит - через год.

При строительстве моста в разрыве насыпи, возводимом на грунтах повышенной сжимаемости, полузаглубленные плиты укладывают через год после засыпки разрыва.

4.13. Для ускорения срока осадки (консолидации) основания насыпи могут быть применены специальные технологические (временная пригрузка насыпи слоем грунта) или конструктивные (вертикальные дрены или дренажные прорези, замена грунта основания и т.д.) мероприятия, разработанные в методических рекомендациях СоюздорНИИ х) .

х) Методические указания по проектированию земляного полотна на слабых грунтах". М., 1974 "Методические рекомендации по применению временной пригрузки взамен выторфовывания при сооружении земляного полотна на торфяных болотах", М., 1974; "Методические рекомендации по проектированию и технологий сооружения вертикальных песчаных дрен и песчаных свай при возведении земляного полотна на слабых грунтах". М.,1974.

Метод пригрузки эффективен при устройстве конусов, для чего их отсыпают несколько увеличенных размеров (по отношению к проектному очертанию примерно на 1 м). Через год пригрузочный слой удаляют и укрепляют конусы по их проектному очертанию.

4.14. Перед кратковременным перерывом в работе (1 - 2 суток) по возведению подходной насыпи и конуса необходимо спланировать их поверхности с целью обеспечения водоотвода.

4.15. Досыпать весной подходную насыпь, возведённую в зимних условиях из связных грунтов, допускается только после того, как грунт оттает, просохнет и приобретет устойчивое состояние, что устанавливается по результатам испытаний контрольных образцов грунта.

4.16. Для уплотнения связного, дренирующего грунта и щебеночных оснований при устройстве сопряжений устоев моста с насыпью рекомендуется применять механизмы ударного, виброударного и вибрационного действия. Для уплотнения связных и несвязных грунтов в стесненных местах рекомендуется применять электротрамбовки (ИЭ~4504); для уплотнения несвязных грунтов, гравия и щебня - самопередвигающиеся виброплиты типа SVP и BSD (ГДР).

Контроль качества отсыпки грунтов

4.17. Плотность отсыпаемого грунта необходимо систематически контролировать путем определения его плотности и влажности по отобранным образцам.

Плотность грунта определяет методом кольца с режущим краем, а влажность - методом высушивания до постоянной массы.

4.18. Плотность и влажность грунтов с каждой стороны моста (путепровода) определяют на каждом метре высоты отсыпанной насыпи: на конусе, на расстоянии 2 - 3 м от задней грани устоя и на расстоянии 50 м от моста. В последнем случае плотность и влажность определяет по пробам, взятым примерно на половине высоты насыпи и на расстоянии 0,7 м от ее верха.

Количество проб, взятых из грунта конуса и вблизи устоя со стороны подходов на каждом метре высоты, должно быть не менее 6.

4.19. В процессе уплотнения необходимо следить за равномерностью уплотнения в поперечном и продольном направлениях.

Все данные о степени уплотнения грунтов, толщине слоев и технологии производства работ, полученные в процессе систематического контроля, должны быть занесены в журнал контроля уплотнения насыпей.

Отклонения от требуемого коэффициента, уплотнения в сторону уменьшения допускаются не более, чем у 10 % о бразцов и не должен превышать по абсолютной величине 0,04.

Разница между значениями коэффициента уплотнения, определенными в поперечном сечении верхнего слоя подходной насыпи для дорог с усовершенствованными покрытиями, не должна превышать 0,02.

5. УКРЕПЛЕНИЕ ОТКОСОВ КОНУСОВ

Общие указания

5.1. При оценке местной устойчивости откосов и при выборе типа решетчатых конструкций следует пользоваться "Техническими указаниями по применению сборных решетчатых конструкций для укрепления конусов и откосов земляного полотна" ().

Бетонные монолитные или сборные плиточные крепления должны осуществляться в соответствии с указаниями проекта.

5.2. Во всех случаях крепления откосов конусов (сплошное или решетчатое) у их подошвы необходимо расположить бетонный или железобетонный упор, служащий для воспринятия сдвигающих усилий от собственного веса конструкций крепления.

5.3. Содержание откосов конусов должно осуществляться в соответствии с указаниями действующих нормативных документов.

Подтапливаемые конусы

5.4. Типы укреплений откосов и подошв конусов в пределах подтопления должны приниматься в зависимости от скорости течения воды, высоты волны, длительности подтопления, условий ледохода согласно указаниям пп. 5.5 ÷ 5.8.

5.5. Отметка верха укреплений должна быть выше расчетного уровня воды (с учетом подпора и наката волны) не менее 0,5 и у мостов через большие и средние реки и не менее 0,25 м у мостов через малые водотоки.

5.6. Откосы конусов, находящихся в зоне постоянного подтопления, следует укреплять монолитным бетоном иди бетонными или железобетонными плитами.

Выше уровня постоянного подтопления выбор типа крепления откосов конусов осуществляется в зависимости от гидрогеологических условий.

При малых скоростях течения паводковых вод и незначительном волнобое (высота волны не более 0,3 м) допускается применять для крепления откосов выше уровня постоянного подтопления решетчатые железобетонные конструкции.

Тип заполнения ячеек решетчатых конструкций назначается в зависимости от гидрогеологических условий. При длительности подтопления более 20 суток и скорости течения порядка 1 м/сек ячейки следует заполнять каменной наброской.

5.7. В случае возможного размыва подошвы конуса необходимо предусматривать ее защиту от размыва. Для защиты подошвы конуса следует использовать каменную наброску, гибкие покрытия или комбинированные конструкции (гибкое покрытие совместно с каменной наброской).

5.8. При высоте конусов не более 6 м вне пределов подтопления откосы допускается укреплять сплошной одерновкой.

Неподтапливаемые конусы

5.9. Конуса высотой до 6 м допускается укреплять травосеянием или сплошной одерновкой (в случае обеспечения местной устойчивости откосов).

5.10. При высоких насыпях, а также в случаях, когда травосеяние и одерновка неэффективны и трудоемки, когда грунт конусов легко размываем и склонен к сползанию или пластичному течению с последующим образованием сплывов и оплывин, целесообразно откосы конусов крепить сборными решетчатыми конструкциями (табл. 14).

5.11. Откосы конусов путепроводов рекомендуется крепить решетчатыми конструкциями по варианту № 1 б , 2, 4 (табл. 14). Ячейки следует заполнять растительным грунтом с последующим гидропосевом трав, а в неблагоприятных для прорастания травы условиях - местными естественными материалами (гравийно-песчаными, торфо-песчаными смесями, мелким камнем и т.п.).

Длину стальных штырей в конструкциях крепления по вариантам № 2 и 4назначают равной 0,5 м, а размер ячеек 1,5×1,5 м. Длину железобетонных свай (вариант № l б ) - 1 м.

5.12. Откосыконусов путепроводов, поверхностный слой грунтов которых склонен в весенний период к быстрому переходу в текучее состояние с образованием оплывов и оплывин глубиной до 0,5 м, следует укреплять решетчатой конструкцией по варианту № 1 а и 4.

Длину стальных штырей в варианте № 4 назначат равной 0,8 м, размер ячеек 1×1 м. Длину железобетонных свай (вариант 1 а ) 1 м.

Ячейки заполняет местным непучинистым грунтом с последующим гидропосевом, каменной наброской гравием, гравийно-песчаными смесями.

5.13. Работы по изготовлению сборных элементов и монтажу решетчатых конструкций должны выполняться согласно указаниям .

1. Виды и назначение опорных частей и подферменников .

Опорные части – это элементы моста, передающие опорные давления от пролётного строения на опоры и позволяющие совершать пролётным строениям угловые и линейные перемещения.

Опорные части могут быть:

1. Неподвижные о.ч. – для передачи давления от пролётного строения на опоры и поворота пролётных строений на некоторый угол при неравномерной просадке фундаментов опор.

2. Подвижные о.ч. – для тех же целей, что и неподвижные о.ч. плюс позволяют совершать линейные перемещения пролётным строениям при температурном расширении.

По конструкции о.ч. бывают:

1. Прокладки – состоят из нескольких слоёв рубероида, толя и применяются при длине пролётов до 12 м. Самые простые и дешевые о.ч., но имеют малый срок эксплуатации.

2. Плоские металлические листы - применяются при длине пролёта до 15 м.

К листам приваривают арматурные стержни, закрепленные в бетоне балки и опоры.(на неподвижной опоре укладывают один опорный лист толщиной 10-20 мм, а на неподвижной – два листа, скользящие друг по другу

Между листами для лучшего скольжения укладывается тонкий слой талька .

3. Тангенциальная опорная часть – применяется при длине пролёта до 18 м.

1 – пролётные строения; 2 – опора моста; 3 – верхняя металлическая подушка с горизонтальной поверхностью и с отверстием; 4 – нижняя металлическая подушка с цилиндрической поверхностью и вваренным штырём; 5 – отверстие для штыря; 6 – штырь; 7 – выпуски арматуры.

В неподвижной опорной части устраивают потайной штырь против сдвига верхней подушки по нижней, а в подвижной опорной части штырь не делают и смещение происходит за счет скольжения верхней подушки по нижней.



4. Резинометаллическая опорная часть. Эту опорную часть применяют при любой длине пролёта.

Такие опорные части дешевы, их легко устанавливать и заменять. Они наиболее удобны при большой ширине моста (более 12м.) где необходимо учитывать не только продольные деформации конструкции, но и поперечные – они обеспечивают перемещение в двух направления, они также гасят колебанию от проезда автомобилей и уменьшают передачу динамических воздействий на рассоложенные ниже опоры. Линейные перемещения обеспечиваются за счет упругого сдвига ре6зины

Опорные части можно располагать непосредственно на самой опоре, если до любой грани опоры от любой грани опорной части сохраняется расстояние не менее 15 см, но если опора не приспособлена или не удобна для непосредственной установки опорных частей, то под ними устраивают ригель или подферменники .

При большей длине пролетного строения возможно применение катковой опорной части (рассматривается позже в 7 разделе)

Подферменник представляет собой прямоугольный выступ из тела опоры, монолитно с ней соедененный и густо армированный сетками ненапрягаемой арматуры (кол-во сеток принимается расчетом)

Виды береговых опор.

Опора является основной частью моста. По затрате труда, материалоёмкости и стоимости работ составляют 60-70 % от общих затрат на мост.

Опоры моста – это элемент воспринимающий нагрузку от пролётных строений и передающим её вместе с собственным весом на фундамент и основание.

Кроме того, на опоры моста действуют следующие внешние факторы:

давление ото льда, ветра, грунта и навала судов.

Опоры делятся на 2 группы:

1 – береговые (устои);

2 – промежуточные.

Выбор типа береговых опор по конструкции зависит от длины пролётов, от высоты насыпи на подходах.

Устои по конструкции бывают:

1. Однорядная свайная береговая опора - применяется при высоте насыпи подходов до 2 м и при длине пролётов до 12 м. Имеет простейшую конструкцию

Шкафная стенка и откосные крылья предназначены для поддержания грунта насыпи.

2. Двухрядный свайный устой применяется при высоте насыпи подходов до 4 м и длине пролёта до 24 м.

3. Устой козлового типа применяется при высоте насыпи подходов до 6 м и длине пролёта до 40 м.

4. Устой с обратными стенками. Такой вид устоев применяется тогда, когда невозможно стеснение русла реки конусами (или в городских моста, для устройства проезда под мостом) и применяется при высоте насыпи до 10 м и длине пролёта более 40 м.

Устойчивость устою обеспечивает фундамент, увеличенный в сторону насыпи, т.к грунт лежащий на фундаменте удерживает своим весом опору от сдвига и опрокидывания.

5. Обсыпной устой, применяется при любой высоте насыпи подходов и при любой длине пролётов.

Все засыпаемые грунтом поверхность устоев должны быть защищены гидроизоляцией (обмазка битумом)

Виды промежуточных опор.

1. Однорядная свайная опора применяется при высоте моста h м до 4 м; длине пролета l Р до 12 м; толщине льда h льда до 30 см. (широко применяемое сечение свай 35 х 35 см)

2. Двухрядная свайная опора применяется при высоте моста h м до 6 м, длине пролета l Р до 20 м, толщине льда h льда до 30 см. (при толщине льда более 0,3 м для защиты опоры от повреждения льдом устраивают ледорезный блок из трех свай)

4. Массивная, применяется при любой высоте моста, при любом l Р и при любой h льда.

Специальной облицовки опор для защиты от ледохода можно не делать, но бетон должен быть класса не ниже В25 при морозостойкости Мрз 100-200, а в суровых климатических условиях поверхности опор в зоне возможных уровней ледохода нужно облицовывать бетонными блоками с бетоном не ниже класса В45 и морозостойкостью не ниже Мрз 300

4. Сопряжение моста с насыпью подходов – устраивается для плавного въезда транспорта на моста, предотвращает просадки насыпи

* 400 - для железобетонных элементов промежуточных опор железнодорожных и совмещенных мостов на постоянных водотоках.

** 500 - для блоков облицовки опор больших железнодорожных и совмещенных мостов через реки с ледоходом при толщине льда свыше 1,5 м.

5.3. Сопряжение моста с насыпью. Концевые опоры (устои)

5.3.1. Общие требования к сопряжению моста с насыпью

Сопряжение моста с подходными насыпями осуществляется в пределах копченых участков насыпей - конусов, внутри которых располагаются концевые опоры моста - устои. Главное требование к этому сопряжению - обеспечить плавный въезд па мост за счет плавного изменения жесткости основания ж. д. пути или дорожного покрытия автопроезда. В пределах моста основание пути (слои балласта или железобетонная плита) дает мод нагрузкой незначительные упругие осадки. На насыпи осадки значительно больше. Чтобы в рельсах не возникали большие напряжения или не происходило расстройство дорожного покрытия, необходимо обеспечить плавное увеличение жесткости основания по мере приближения к мосту. Это обеспечивается прежде всего тем, что устой, воспринимая горизонтальное давление насыпи от собственного веса грунта и временной нагрузки на насыпи за устоем, препятствует большим вертикальным перемещениям верха насыпи. Кроме того изменение жесткости обеспечивается укладкой за устоем специальных переходных плит. Насыпь удерживается от сползания в пролет конусом, который сам по себе должен быть устойчивым. Обсыпные устои даже традиционной конструкции (см. рис. 5.1) не могут удержать насыпь от деформаций, а при расчете па устойчивость против глубокого сдвига (см. п. 6.5.2) увеличивают сдвигающую силу в сравнении со стоечными устоями вследствие большего веса конструкции.

Рис. 5.1. Обсыпной устой

При проектировании необсыпного устоя его переднюю грань совмещают с точкой пересечения откоса конуса с поверхностью грунта (точка В на рис. 5.2).

Рис. 5.2. Необсыпной устой

Основные конструктивные требования, к сопряжениям устоев с насыпью и конструкции устоев, предусмотренные СНиП 2.05.03-84, приведены на рис. 5.3.

Рис. 5.3. Сопряжение устоя с насыпью:

Размеры в см. Н - высота насыпи

*при сейсмичности 9 баллов максимальная крутизна откосов 1:1,75

5.3.2. Устройство конусов

Нарушение устойчивости конуса может произойти из-за подмыва его подошвы, из-за уменьшения сил трения между частицами грунта при намокании, при динамических (особенно сейсмических) воздействиях, а также из-за сдвигов в грунте основания конуса под действием сил веса самого конуса и временной нагрузки на насыпи. Необходимая устойчивость конуса обеспечивается заданием его откосам достаточно пологих уклонов (рис. 5.3), отсыпкой конуса насыпи дренирующим грунтом (песок, гравий, в особых случаях - щебень, каменная наброска), а защита от размыва-укреплением откосов.

При высоте насыпи более 12 м предельно допускаемая крутизна откосов должна определяться расчетом конуса па устойчивость против глубокого сдвига (см. п. 6.5.2).

На реках, где осуществляется регулирование пропуска поды под мостом в периоды паводков путем устройства струенаправляющих дамб и других регуляционных сооружений, откосы дамб и пойменных насыпей проектируются с учетом воздействия ледохода, волн, течения воды и требуют усиленного крепления. Это относится и к откосам конусов, подверженным тем же воздействиям. Обычно откосы укрепляют сборными или монолитными железобетонными плитами, реже - каменным мощением или каменной наброской. Верх укрепления насыпей должен быть защищен от разрушения, особенно под действием накатывающихся волн, способных подмыть крепление сверху. С этой целью укрепление поднимается выше уровня наката волн на откос при высоком уровне воды. Кроме высоты наката волн, необходимо учесть высоту подпора воды перед мостом, и предусмотреть запас по высоте не менее 0,5 м. При определении высоты укрепления ориентируются па высокие уровни воды, соответствующие наибольшим паводкам (НУВВ) - для мостов на железных дорогах общей сети и расчетным паводкам (РУВВ) для остальных мостов.

Верхняя часть конусов и откосов насыпей также укрепляется бетоном или камнем (против ветровой эрозии и разрушения атмосферными осадками). Мощность такого укрепления (толщина плит, крупность камня к др.) обычно меньше мощности укрепления нижней части, подвергающейся ледовому и волновому воздействию. Конус обсыпного устоя может выполнять роль струенаправляющего сооружения (конус с уширением). Если же устраивается струенаправляющая дамба, то конус сливается с дамбой, которая как бы служит его основанием. Поэтому на уровне верха укрепления нижней части откоса обычно устраивается берма шириной 2-3 м (в случае устройства струенаправляющей дамбы эта берма совмещается с горизонтальном площадкой по верху дамбы). При вариантном проектировании уклон откоса конуса ниже бермы может быть назначен в пределах от 1:2 до 1:3, а в случае устройства дамбы уклон ее откоса со стороны русла реки - 1:3 или еще более пологим. Выше берм уклон откоса конуса назначают не круче 1:1,5 (рис. 5.4).

Рис. 5.4. Сопряжение большого моста с насыпью

Укрепление откоса по подошве (в уровне естественной поверхности грунта) упирают в своего рода фундамент (упор) в виде бетонного блока или рисбермы трапецеидального сечения из камня. Укрепляется часто также и некоторая полоса горизонтальной поверхности основания вдоль подошвы откоса.

Конусы, пойменные насыпи, регуляционные сооружения, как правило, располагают за пределами меженного русла реки (в пределах пойм). Это, в частности, является одним из условий (хотя обычно и не главным), определяющих минимальную величину отверстия моста и его расположение относительно меженного русла реки *.

* Исключением являются случаи, когда в процессе строительства моста проводится регулирование русла реки (спрямление русла, устройство набережных), т. е. когда, кроме строительства моста, проводятся еще и специальные гидротехнические работы.

Для сейсмических районов конусы насыпей у устоев проектируются в соответствии со СНиП II-7-81.

5.4. Конструирование устоев

5.4.1. Оголовки устоев

Подферменник (оголовок) устоя служит для распределения нагрузки, воспринимаемой от пролетного строения, на несущую конструкцию. Для массивных бетонных устоев он устраивается железобетонным (обычно армируется двумя арматурными сетками, расположенными поверху и понизу плиты) и должен иметь толщину не менее 40 см. Поверх армированной части плиты укладывается монолитно связанный с ней бетон сливов, имеющий наклонную верхнюю поверхность для стока воды. Уклоны не должны быть положе 1:10.

Опорные части устанавливаются на подферменные площадки, армированные сетками по расчету на местное смятие. Подферменные площадки также монолитно связаны с плитой оголовка и должны возвышаться над наиболее высокой его частью не менее, чем на 15 см. Размеры оголовков и подферменных площадок определяются размерами нижних плит опорных частей (см. рис. 5.3). Величины «а» и «в» принимаются не менее значений, приведенных в табл. 5.2 и 5.3 соответственно.

Таблица 5.2

Минимальные значения расстояния от грани подферменной площадки до грани оголовка опоры вдоль моста

Длина примыкающего пролетного строении l , м

min а , см

не нормируется

Примечание : при сейсмичности 9 баллов а min = 0,005 l .

Таблица 5.3

Минимальные значения расстояния от грани подферменной площадки до грани оголовка опоры поперек моста

Тип пролетного строения

Тип опорной части

min b , см

ребристое

плоские тангенциальные

катковые, секторные

Расстояние от оси опирания пролетного строения до шкафной стенки определяется по формуле

где L п - полная длина пролетного строения в уровне проезжен части (для сквозных ферм - по продольным балкам);

L р - расчетный пролет;

Δс - зазор, принимаемый:

асм - при установке на устой неподвижной опорной части,

б) 5 + Δl т + Δl в - при установке на устой подвижной опорной части (Δl т - температурное удлинение пролетного строения; Δl в - удлинение нижнего пояса от временной нагрузки),

в) по расчету - при установке пролетных строений на резиновые опорные части; при гибких опорах и температурно-неразрезных пролетных строениях.

5.4.2. Обсыпные устои при высоких насыпях

При высоких насыпях устои пока строится по индивидуальным проектам с применением как сборных, так и монолитных конструкций.

Рис. 5.5. Пример стоечного устоя автодорожного моста:

1 - заранее отсыпанная часть насини

На рис. 5.1 показан пример обсыпного устоя моста под железную дорогу - массивной конструкции. Часть тела устоя, расположенная под подферменником, проектируется по размерам подферменника. Остальная часть может быть более узкой. Кроме того, для ее облегчения возможно устройство проемов (ниш). Фундамент смещен в сторону пролета в соответствии с положением равнодействующей нагрузок. Если фундамент обсыпного устоя проектируется свайным, то нет необходимости заглублять плиту ростверка ниже поверхности грунта: целесообразно размещение плиты выше естественной поверхности грунта с погружением свай сквозь отсыпанную или намытую часть насыпи. Это позволяет вести работы без устройства котлована, без водоотлива, что существенно упрощает и удешевляет сооружение устоя.

Примеры сборных устоев см. рис. 5.5 и п. 3. Если судоходный пролет моста с пролетным строением с ездой понизу примыкает к берегу, то может оказаться более экономичным устройство перед устоем переходного пролета, перекрытого пролетным строением с ездой поверху, хотя при этом требуется дополнительная промежуточная опора. С целью предотвращения осадок проезжей части за задней гранью устоя, под полотном дороги укладывается переходная железобетонная плита, которая должна плотно лежать на песчаном или гравийно-щебеночном основании. Одним краем плита опирается на устой а другим - на железобетонный лежень, опирающийся в свою очередь на гравийно-песчаную подушку. Плита укладывается с небольшим уклоном. Переходная плита частично разгружает устой от горизонтального давления грунта насыпи, вызванного временной нагрузкой. Длину плиты принимают обычно 4-8 м.

5.4.3. Необсыпные устои

Необсыпные устои применяют обычно при высотах насыпи до 6-8 м, преимущественно в городских условиях, чаше - в сочетании с подпорными стенами.

Устои с обратными стенками (рис. 5.6) имеет в плане П-образную форму. Внутреннее пространство устоя заполняется дренирующим грунтом. Ширину устоя поперек оси моста обычно назначают равной расстоянию между перилами на проезжей части моста. Толщину бетонных боковых (обратных) стенок назначают поверху около 0,5 м и увеличивают к низу за счет придания внутренним граням стенок уклона порядка 4:1. Толщину железобетонных стенок назначают по расчету. Стенки рассчитывают па действие горизонтального давления грунта засыпки устоя от его собственного веса и от временной нагрузки. Чтобы исключить возможность распирания устоя силами морозного пучении грунта, необходимо обеспечить отвод воды, проникающей внутрь устоя. Для этого внизу засыпки устраивается дренаж.

Деформации засыпки под действием временной нагрузки стеснены передней и обратными стенками, благодаря чему обеспечивается достаточно плавное возрастание жесткости основания пути при въезде на мост.

При небольшой ширине эффективнее оказывается конструкция монолитного необсыпного устоя с балластным корытом (рис. 5.2). Тело устоя устраивается узким, а края балластной призмы и тротуары располагают на железобетонных консолях. Глубина балластного корыта увеличивается по направлению к задней грани устоя, чем обеспечивается плавность въезда на мост («мягкий въезд»).

Рис. 5.6. Необсыпный устой с обратными стенками

Часть устоя, расположенная под балластным корытом, может быть значительно более узкой (до 2,5 м) и дополнительно еще облегчается путем устройства ниш по бокам кладки. В этом случае в среднем (по высоте устоя) сечении кладка устоя имеет Т-образную или двутавровую форму.

5.5. Конструирование промежуточных опор балочных мостов

5.5.1. Оголовки промежуточных опор

Принципы устройства оголовков показаны на рис. 5.7, размеры «а» и «в» - в табл. 5.2 и 5.3. Для массивных опор форма оголовка, как правило, соответствует форме поперечного сечения верхней части опоры. К оголовкам промежуточных опор предъявляются те же конструктивные требования, что и к оголовкам устоев (см. п. 5.4.1). Расстояние «с» между осями опирания соседних пролетных строений определяется по формуле:

с = а 1 + а 2 + Δс ,

L п1, L п2 - полные длины пролетных строении в уровне проезжей части (для сквозных ферм - по продольным балкам);

Рис. 5.7. Оголовки промежуточных опор:

а - обтекаемой формы; б - необтекаемой формы

L п1, L п2 - расчетные пролеты; Δс - зазор, принимаемый:

а) 5-6 см - при опирании па опору разрезных пролетных строений через разноименные опорные части при длинах пролетных строений до 25 м;

б) 5 + Δl t + Δl в - то же при длинах пролетных строении более 25 м (Δl t - температурное удлинение пролетного строения; Δl в - удлинение нижнего пояса от временной нагрузки);

в) по расчету - при установке пролетных строении па резиновые опорные части; при использовании температурно-неразрезных пролетных строений.

При больших пролетах для удобства производства работ в период эксплуатации значение «с» увеличивается на 10-30 см. При определении величины Δl t учитывается температура замыкания (установки на опорные части); при определении величины Δl в учитываются условия установки нижней плиты подвижной опорной части и катка (сектора) - как правило, с учетом того, что при половинной временной нагрузке вертикальные оси верхнего балансира и нижней (опорной) плиты oпopнoй части совпадали.

Если на опору опираются разнотипные пролетные строения, то положение осей опирания относительно оси опоры назначается таким образом, чтобы равнодействующие вертикальных опорных реакций минимально отклонились от оси опоры.

В свайных, столбчатых и стоечных (рамных) опорах железобетонные насадки или ригели выполняют также роль оголовков (подферменников). Они устраиваются более узкими, чем оголовки массивных опор. Их ширина назначается по условиям размещения и заделки свай или стоек и из условия, чтобы расстояния от краев нижних плит опорных частей до краев ригеля или насадки не превышали 15 см.

5.5.2. Основные особенности компоновки промежуточных опор

Промежуточные опоры свайные, столбчатые, стоечные и рамные сооружаются, преимущественно, по действующим типовым проектам . При индивидуальном проектировании таких опор рекомендуется учитывать следующее:

Основные несущие элементы (сваи, стойки) целесообразно располагать но осям опорных частей или в непосредственной близости от них. Такое решение позволит уменьшить армирование насадки (ригеля);

При значительных горизонтальных усилиях (например, в мостах на кривых) следует применять наклонные сваи и стойки;

При расчете ригелей в виде перевернутой буквы «Т» (рис. 5.8) количество вертикальной арматуры в ребре, (хомутов) складывается из трех компонентов:

а) хомуты, количество которых определяется расчетом па перерезывающую силу;

б) вертикальные стержни, работающие на отрыв полок опорными реакциями балок (расчет на осевое растяжение);

в) хомуты, воспринимающие крутящие моменты в ригеле при загружении временной нагрузкой одного пролета.

Для предварительном оценки расхода арматуры в ригелях, учитывая значительную трудоемкость расчетов по п. п. «б» и «в», допускается количество вертикальной арматуры, определенное по п. «а», удвоить.

Монолитные и сборно-монолитные массивные опоры сооружаются обычно с вертикальными гранями. Нижним (подтопляемый водой) ярус опоры имеет обтекаемую форму с заостренными ледорезом и кормом.

Грани ледореза образуют обычно угол 60°-90° и сопрягаются между собой и боковыми вертикальными гранями опоры цилиндрическими поверхностями радиусом 0,75 м.

Рис. 5.8. Односеточная опора с ригелем в виде перевернутой буквы «Т»

Ледорез начинается от обреза фундамента и должен возвышаться над уровнем высокого ледохода, поскольку у ледореза происходит торошение льда. Для районов с суровыми и особо суровыми климатическими условиями верх ледореза назначают не ниже расчетной границы зоны переменного уровня воды, т. е. не менее чем на 1 м выше наивысшего уровня ледохода пли с большим запасом, если предполагается значительное торошение льда.

Верхние части опоры могут иметь прямоугольную форму или (при большой ширине моста) состоять из отдельных столбов, стоек. Здесь могут применяться пустотелые конструкции коробчатого или круглого сечения, причем для железобетонных пустотелых конструкции толщина стенок может быть принята не менее 15 см.

Если все тело опоры (начиная от обреза фундамента) проектируется железобетонным, что допускается СНиП 2.05.03-84, то размеры его как вдоль, так и поперек оси моста могут быть значительно уменьшены по сравнению с размерами массивных бетонных опор. В этом случае опора становится более деформативной и лимитирующим может оказаться расчет опоры по горизонтальным перемещениям ее оголовка.

Положение обреза фундамента относительно уровней воды действующими нормами не регламентируется. В случае его расположения в пределах колебания уровней воды и льда следует предусматривать на обрезе фундамента фаски размером не менее 0,3×0,3 м, а фундаменту придавать обтекаемую в плане форму. Нe регламентируется и положение подошвы плиты свайного ростверка относительно уровней воды. В современной практике строительства имеются случаи сооружения опор с расположением плиты свайного ростверка целиком выше уровня межени. Такое конструктивное решение, безусловно является наиболее удобным при производстве работ, однако с эксплуатационной точки зрения оно неприемлемо на реках с сильным ледоходом, а также по архитектурным соображениям.

При конструировании фундамента необходимо рассмотреть разные варианты расположения его по высоте с учетом способов производства работ, затрат на вспомогательные сооружения и в процессе строительства и с учетом условий эксплуатации моста. Если обрез фундамента располагается выше уровня низкого ледохода (УНЛ), то при расчете фундамента необходимо учесть давление льда на фундамент в период ледохода, которое, естественно, больше, чем давление на тело опоры. Необходимо также учитывать дополнительную вертикальную нагрузку на фундамент в период зимнего стояния льда от зависания ледового покрова на обрезе фундамента или на сваях (если нижняя поверхность слоя льда располагается ниже подошвы плиты высокого свайного ростверка), возникающего при колебаниях уровня воды зимой. Такого зависания не происходит, если располагать обрез фундамента ниже нижней поверхности льда наинизшего ледостава не менее, чем на 0,5 м.

В этом случае к бетонной кладке фундамента можно предъявлять требования как к бетону подводных конструкций.

Расположение обреза фундамента выше УМВ может существенно упростить возведение как фундамента, так и тела опоры. Если фундамент свайный, то необходимо учитывать, что для возможности бетонирования плиты ростверка насухо потребуется устраивать ограждение из шпунта или в виде опускного ящика и укладывать под подошвой плиты ростверка тампонажный слой из бетона. Все эти мероприятия не требуются, если подошву плиты поднять выше РУ. Но если фундамент устраивается из буронабивных свай с островка, который так иди иначе ограждается (например, шпунтом), то плиту ростверка можно забетонировать в котловане с водоотливом без особых дополнительных затрат.

Таким образом, вопрос о высотном положении обреза фундамента подошвы плиты свайного ростверка должен решаться путем технико-экономического сравнения варианта с учетом перечисленных и других (например, архитектурных) требований.

5.6. Рекомендации по выбору схемы высокого свайного ростверка опоры

С точки зрения простоты производства работ, снижения стоимости вспомогательных сооружений (направляющий каркас и др.) наиболее рациональным является ростверк с вертикальными сваями. Такой ростверк, кроме того, наиболее эффективно воспринимает вертикальные силы и момент, действующие в вертикальных плоскостях. Однако, горизонтальные силы, приложенные к плите ростверка, могут быть восприняты только за счет работы свай на изгиб. Изгибающие моменты в сваях увеличиваются пропорционально увеличению свободной длины сваи (от подошвы плиты ростверка до уровня размыва грунта). Ориентировочно можно считать, приемлемой свободную длину до 6 - 7 диаметров сваи (столбов). При буронабивных сваях и сваях-оболочках диаметром более 1,0 м ростверки на вертикальных сваях являются в настоящее время единственно возможным решением в связи с отсутствием оборудования для наклонного бурения и вибропогружения наклонных свай-оболочек.

С точки зрения эффективности восприятия горизонтальных сил теоретически наиболее выгодной является схема ростверка так называемого козлового типа (рис. 5.9, а ), в котором в сваях возникают только продольные усилия. Изгибающие моменты возникают лишь из-за жесткости заделки свай в плите ростверка в связи с ее перемещениями, вызванными продольными деформациями свай, и при внецентренном приложении усилий. Распределение усилий в сваях оказывается наиболее равномерным и поэтому требуется минимальное количество свай. Однако практически осуществлять такую схему сложно по конструктивным причинам. На практике применяются близкие к оптимальной схемы без обратных уклонов свай по типу, показанному на рис. 5.9, б . Наклоны сваям задаются в пределах от 3:1 до 5:1. При более крутых наклонах неточность выполнения заданного наклона существенно влияет па распределение усилий между связями.

Рис. 5.9. Свайные ростверки:

а - козлового типа; б - с вертикальными и наклонными сваями

Схема с веерным расположением свай, показанная на рис. 5.10 наименее эффективна (и обычно оказывается неприемлемой) из-за больших изгибающих моментов, возникающих в сваях, и больших перемещении опоры. Это легко понять, если привести все силы, действующие на опору, к точке пересечения oceй свай (точка М). Горизонтальная и вертикальная равнодействующие воспринимаются за счет продольных усилии в сваях, но изгибающий момент может быть воспринят только за счет работы свай на изгиб. При этом возникает значительный наклон опоры, и горизонтальные перемещения оголовка оказываются значительно больше, чем в случае ростверка с вертикальными сваями. Повысить жесткость ростверка можно путем увеличения диаметра свай (применяя, например, железобетонные сваи-оболочки) или их количества.

Рис. 5.10. Ростверки с веерным расположением свай

5.7. Особенности конструирования опор рамных мостов

Опоры и пролетные строения рамных мостов представляют собой единое целое как в смысле статической работы, так и в конструктивном отношении. Рамные мосты в настоящее время применяются относительно редко и выполняются почти исключительно из железобетона. Определенную специфику имеет узел сопряжения пролетного строения (ригеля рамы) с опорой (стойкой рамы). В этом узле часть изгибающего момента, действующего в пролетном строении, передается па опору.

При больших пролетах пролетные строения обычно выполняются коробчатыми. Рабочая арматура пролетного строения в надопорном сечении располагается в верхней плите и частично (по величине момента, передаваемого на опору) пли полностью заанкеривается у противоположной грани опоры. Если опора монолитная или сборномонолитная, а сборка пролетного строения ведется навесным способом, то опора возводится до уровня верха пролетного строения, и арматура опоры заводится и заанкеривается выше уровня анкеровки рабочей арматуры пролетного строения (в верхнем его поясе). Такая конструкция обеспечивает надежное соединение опоры и пролетного строения.

Если опора в верхней части имеет коробчатую конструкцию, то ее боковые (продольные) стенки располагают в одних плоскостях со стенками пролетного строения, а внутри коробки пролетного строения (в плоскостях поперечных стенок опоры) устраивают диафрагмы. Они обеспечивают передачу изгибающего момента на опору, для чего рабочая арматypa опоры, расположенная в ее поперечных стенках, должна заводиться в эти диафрагмы. Изгибающий момент передается в виде пары сил от вертикальных стенок пролетного строения через диафрагмы на арматуру и бетон опоры. При этом сами диафрагмы работают в вертикальном направлении на срез и соответственно должны быть заармированы расчетной наклонной арматурой или сетками. Дополнительное армирование поперечной арматурой может потребоваться и в надопорных участках пролетного строения - как в его стенках, так и в верхней и нижней плитах. Таким образом, при конструировании коробчатого узла сопряжения пролетного строения с опорой должны быть продуманы сложные условия его пространственной работы.

Опоры железобетонных рамных мостов могут проектироваться как из обычного железобетона, так и предварительно напряженными. При этом в опорах на водотоках допускается применять только стержневую арматуру (ненапрягаемую или предварительно напряженную).

В остальном опоры рамных мостов должны удовлетворять тем же конструктивным требованиям, что и опоры балочных мостов.

5.8. Опоры арочных мостов

Железобетонные арочные мосты являются наиболее надежными и долговечными, почти не требуют эксплуатационных расходов , поскольку бетон арок работает в наиболее естественных условиях - преимущественно на сжатие (изгибающие моменты, возникающие в арках, обычно, очень малы). Недостатками арочных мостов являются: сложность сооружения арок и более высокая стоимость опор, поскольку опоры требуются более массивные, чем у балочных мостов, с более развитыми в плане фундаментами, поскольку опоры арочных мостов воспринимают большие горизонтальные силы от распора арок. Под действием горизонтальных и вертикальных сил они не должны испытывать значительных перемещений, поскольку это существенно влияло бы на напряженное состояние арок. Отсюда вытекают определенные требования к основаниям и фундаментам опор. Наиболее подходящими являются основания в виде скальных или полускальных пород. Вполне приемлемыми являются крупнообломочные, гравелистые грунты, крупно - и среднезернистые и плотные пески. Известны случаи строительства арочных мостов па твердых глинах. Если такие породы налегают глубоко, то в качестве фундаментов применяются свайные ростверки. Последние целесообразны, если опоры сооружаются па суходоле или при небольшой глубине воды. Устои арочных мостов воспринимают односторонний распор от постоянной и временных нагрузок, поэтому их фундаменты должны быть значительно развиты вдоль оси моста в сторону берега. При этом, если несущий слой грунта залегает глубоко, то наиболее целесообразным решением фундамента является свайный ростверк с наклонными сваями, ориентированными по направлению равнодействующей от постоянной и временной вертикальной нагрузок. Подошва плиты ростверка при этом устраивается наклонной и только у передней грани плиты она проектируется горизонтальной, и здесь 2-3 ряда свай погружаются вертикально или наклонно в сторону пролета (с учетом сил, действующих со стороны берега).

Пяты арок должны возвышаться над наивысшим уровнем ледохода (а для железнодорожных мостов также и над расчетным уровнем высоких вод) не менее, чем на 0,25 м.

При выборе вариантов моста (в том числе при курсовом и дипломном проектировании) размеры опор и фундаментов могут быть определены предварительно, рассматривая арки как трехшарнирные. Собственный вес опоры играет очень существенную роль, поэтому размеры опоры и фундамента желательно подбирать методом последовательных приближений (2-3 шага).

При расчете устоя временная нагрузка (в виде эквивалентной нагрузки для линии влияния с максимумом посередине) располагается только на арочном пролетном строении (т. е. с одной стороны устоя). Распор «Н » от временной нагрузки приближенно определяется по формуле:

где l и f - пролет и стрелка арки;

q в - суммарная временная нагрузка с учетом всех полос загружения (для автодорожных мостов).

Вертикальное давление:

Усилия от постоянных нагрузок:

где q р - постоянная нагрузка от веса балласта и верхнего строения пути (или веса дорожного покрытия в случае автодорожного моста), включая вес арочного пролетного строения;

т - коэффициент, учитывающий неравномерность распределения веса арок и стоек надарочного строения по длине пролета, которым можно принять при отношениях f /l , равных 1/4, 1/3 и 1/2, равным соответственно 0,85; 0,8 и 0,7.

Коэффициенты надежности по нагрузке γ в данном случае принимаются большими единицы. Силы Q и Н прикладываются к опоре в центрах опорных сечении арок и считаются распределенными поровну между всеми арками пролетного строения.

При эскизном расчете промежуточной опоры величины Q и Н определяются аналогичным образом, но временная нагрузка располагается на одном пролете (учитывается действие одностороннего распора), а для постоянных нагрузок коэффициенты надежности по нагрузке γf принимаются большими единицы для пролета, на котором установлена временная нагрузка, и меньшими единицы для другого (незагруженного) пролета, а также для опоры и фундамента. Конструирование моста рекомендуется вести таким образом, чтобы распоры арок от постоянных нормативных нагрузок, действующие на промежуточные опоры с одного и другого пролета взаимно уравновешивались.

6. РАСЧЕТ МОСТОВЫХ ОПОР

6.1. Общие положения

В соответствии с требованиями СНиП 2.05.03-84 расчеты опор следует выполнять по предельным состояниям на действие постоянных нагрузок и неблагоприятных сочетаний временных.

Для бетонных и железобетонных опор капитальных мостов расчеты производят по двум группам предельных состояний:

Устойчивость фундаментов опор против опрокидывания и сдвига (плоского и глубокого - совместно с грунтом основания);

1.69 Земляное полотно на протяжении 10 м от задней грани устоев у больших железнодорожных мостов должно быть уширено на 0,5 м с каждой стороны, у автодорожных и городских мостов – иметь ширину не менее расстояния между перилами плюс 0,5 м с каждой стороны. Переход от увеличенной ширины к нормальной следует делать плавным и осуществлять на длине 15–25 м.

1.70 В местах примыкания насыпи к устоям железнодорожных мостов следует предусматривать меры для удержания балластной призмы от осыпания.

1.71 В сопряжении автодорожных и городских мостов с насыпью следует, как правило, предусматривать укладку железобетонных переходных плит, опираемых одним концом на шкафную стенку устоя, а другим – на лежень.

Переходные плиты укладывают на полную ширину сооружения. В пределах ширины тротуаров укладывают плиты укороченной длины.

Длину плит следует принимать в зависимости от высоты насыпи и ожидаемых осадок грунта под лежнем плиты, как правило, в диапазоне от 4 до 8 м.

На мостах с устоями, опирающимися непосредственно на насыпь (диванного типа), длину переходных плит следует назначать, учитывая необходимость соблюдения принятого профиля проезда при возможной разности осадок опорных площадок плиты, и принимать не менее 2 м.

Щебеночная подушка под лежнем плиты должна опираться на дренирующий грунт или на грунт насыпи ниже глубины промерзания. Щебеночная подушка должна быть отделена от грунта насыпи разделительным материалом, хорошо фильтрующим и не подверженном быстрому заиливанию. При слабых глинистых грунтах в основании насыпи лежни переходных плит и диванных устоев следует укладывать на армогрунтовое основание.

Щебеночную подушку под переходными плитами и лежнем устраивают из фракционного щебня по способу заклинки. Нижний слой толщиной 50 мм втрамбовывают в грунт.

Поверхности переходных плит и лежня должны иметь гидроизоляцию, преимущественно обмазочного типа.

Переходные плиты следует выполнять, как правило, сборно-монолитными из бетона класса В30, маркой по водонепроницаемости W6 с морозостойкостью, соответствующей району строительства.

Покрытие проезжей части в пределах переходных плит следует выполнять одновременно с устройством покрытия на мостовом сооружении.

1.72 При сопряжении конструкций мостов с насыпями подходов необходимо выполнять условия:

а) после осадки насыпи и конуса примыкающая к насыпи часть устоя должна входить в конус на величину (считая от вершины конуса насыпи на уровне бровки полотна до грани, сопрягаемой с насыпью конструкции) не менее 0,75 м при высоте насыпи до 6 м и не менее 1,00 м при высоте насыпи свыше 6 м;

б) откосы конусов должны проходить ниже подферменной площадки (в плоскости шкафной стенки) или верха боковых стенок, ограждающих шкафную часть, не менее чем на 0,50 м – для железнодорожных и на 0,40 м – для автодорожных и городских мостов. Низ конуса насыпи у необсыпных устоев не должен выходить за переднюю грань устоя. В обсыпных устоях мостов линия пересечения поверхности конуса с передней гранью устоя должна быть расположена выше уровня воды расчетного паводка (без подпора и наката волн) не менее чем на 0,50 м;

в) откосы конусов необсыпных устоев должны иметь уклоны на высоте первых 6 м, считая сверху вниз от бровки насыпи, – не круче 1:1,25, на высоте следующих 6 м – не круче 1:1,50, при высоте насыпи выше 12 м – не менее 1:1,75 в пределах всего конуса или до более пологой его части. Крутизну откосов конусов насыпей следует определять расчетом устойчивости конуса (с проверкой основания);

г) откосы конусов обсыпных устоев, устоев рамных и свайно-эстакадных мостов, а также всех мостов в пределах подтопления при уровне воды расчетного паводка должны иметь уклоны не круче 1:1,5.

Устойчивость концевых участков насыпей и конусов с захватом основания следует проверять по кругло цилиндрическим или иным (обусловленным геологическим строением склона) поверхностям скольжения.

При расположении опор на потенциально оползневых склонах должны быть приняты конструктивно-технологические мероприятия, исключающие активизацию оползневого процесса.

Для сейсмических районов уклоны откосов конусов следует назначать в соответствии с требованиями СНиП II-7.

1.73 Крайний ряд стоек или свай устоев деревянных мостов должен входить в насыпь не менее чем на 0,50 м, считая от оси стойки до бровки конуса, при этом концы прогонов должны быть защищены от соприкосновения с грунтом.

1.74 Отсыпку конусов, а также насыпей за устоями мостов на длину поверху – не менее высоты насыпи за устоем плюс 2,0 м и понизу (в уровне естественной поверхности грунта) – не менее 2,0 м следует предусматривать из песчаного или другого дренирующего грунта с коэффициентом фильтрации (после уплотнения) не менее 2 м/сут. Дренирующую засыпку необходимо тщательно уплотнять до коэффициента уплотнения не менее 0,98.

В особых условиях при соответствующем технико-экономическом обосновании допускается применение песков с коэффициентом фильтрации менее 2 м/сут при обеспечении с помощью конструктивных и технологических мероприятий (в том числе с применением укрепляющих и армирующих материалов и сеток) требуемой надежности и долговечности устоев, конусов и насыпей за устоями.

Разрешается также применение армогрунтовых конструкций без конусов, армированных композитными материалами.

1.75 Откосы конусов у мостов и путепроводов должны быть укреплены на всю высоту. Типы укреплений откосов и подошв конусов и насыпей в пределах подтопления на подходах к мостам и у труб, а также откосов регуляционных сооружений следует назначать в зависимости от их крутизны, условий ледохода, воздействия волн и течения воды при скоростях, отвечающих максимальным расходам во время паводков: наибольших – для мостов на железных дорогах общей сети и расчетных – для остальных мостов. Отметки верха укреплений должны быть выше уровней воды, отвечающих указанным выше паводкам, с учетом подпора и наката волны на насыпь:

у больших и средних мостов – не менее 0,50 м;

у малых мостов и труб – не менее 0,25 м.

ОТВОД ВОДЫ

1.76 Проезжую часть и другие поверхности конструкций (в том числе тротуары), на которые может попадать вода, следует проектировать с поперечным уклоном не менее 20 ‰, в балластных корытах железнодорожных мостов – не менее 30 ‰. При этом, поперечный профиль следует проектировать без перелома уклонов проезжей части и тротуаров.

Продольный уклон поверхности проезжей части на автодорожных и городских мостах следует принимать не менее 5 ‰. При продольном уклоне свыше 10 ‰ допускается уменьшение поперечного уклона при условии, что геометрическая сумма уклонов будет не менее 20 ‰.

1.77 Воду с поверхности проезжей части и тротуаров следует отводить:

При длине сбора воды не более 50 м – по продольному уклону вдоль парапета (цоколя под ограждением или перилами) со сбросом воды поперечными водоотводными лотками, расположенными на конусах;

При длине водосбора более 50 м – сбросом воды по водосточным трубам в местах расположения опор;

При продольных уклонах сооружения 5 - 10 ‰ – с помощью водоотводных трубок, устанавливаемых с шагом 6 – 12 м;

Поперечными лотками, устраиваемыми в разрывах цоколя под перилами с шагом 6 – 12 м.

Неорганизованный сброс воды с сооружения по всей его длине не допускается.

Вода из водоотводящих устройств не должна попадать на нижележащие конструкции, а также на железнодорожные пути и проезжую часть автомобильных дорог, расположенных под путепроводами.

При сбросе воды с мостового сооружения поперечными лотками в зоне над конусом, в их створе на конусе должен быть организован бетонный водоприемный лоток, ориентированный в продольном направлении мостового сооружения.

Поперечные телескопические лотки на насыпи подходов должны быть организованы, как правило, сразу за открылками устоев. При этом между шкафной стенкой и лотком должен быть организован подвод воды к телескопическому лотку с укреплением обочины от размыва.

Верх водоотводных трубок и дно лотков следует устраивать ниже поверхности, с которой отводится вода, не менее чем на 1 см.

При расположении мостового сооружения на уклоне, на подходах к сооружению с верховой стороны должны быть устроены перехватывающие воду поперечные лотки (один или два с шагом 10 м), перекрытые трапами и отводящие воду в телескопические лотки, расположенные на откосах подходов.

На пролетном строении следует устраивать дренажную систему, включающую продольные и поперечные дренажные каналы и дренажные трубки.

При наличии дренажной системы и достаточных уклонах водоотводные трубки можно не устанавливать.

Дренажные каналы располагают в толще защитного слоя или нижнего слоя покрытия. Материал дренажного канала должен быть пористым и обладать прочностью, соответствующей давлению колеса автомобиля. Дренажные трубки следует совмещать со створом водоотводных трубок и размещать между ними.

Дренажные каналы следует выполнять шириной 100-200 мм в поперечном, продольном и диагональном направлениях. Верх дренажных трубок должен находиться в уровне верха гидроизоляции. Продольные дренажные каналы располагают в пониженных местах плиты проезжей части, в местах перелома поперечного профиля у цоколей под ограждениями, в поперечном направлении – у приливов перед деформационными швами. Каналы диагонального направления устраивают на широких пролетных строениях и на пролетных строениях, расположенных на вираже.

Для предотвращения увлажнения нижних поверхностей железобетонных и бетонных конструкций (консольных плит крайних балок, тротуарных блоков, оголовков опор и др.) на них следует устраивать защитные выступы и слезники.

1.78 Водоотводные трубки должны иметь внутренний диаметр не менее 150 мм.

Водоотводные трубки в балластных корытах железнодорожных мостов следует устраивать из расчета не менее 5 см 2 сечения трубки на 1 м 2 площади стока.

Расстояния между водоотводными трубками на проезжей части автодорожных и городских мостов должны составлять вдоль пролета не более 6 м при продольном уклоне до 5 ‰ и 12 м – при уклонах от 5 до 10 ‰. На более крутых уклонах расстояние между трубками может быть увеличено.

Водоотводные трубки следует устанавливать во время бетонирования конструкций. Гидроизоляция должна быть заведена в воронку трубки и защемлена водоприемным стаканом. Конструкция трубок должна позволять быструю и простую их разборку и прочистку.

1.79 При необходимости сохранения вечномерзлых грунтов в основаниях устоев следует предусматривать меры, исключающие доступ воды к основанию.

В случае притока поверхностной воды со стороны подходов необходимо предусматривать устройства для отвода ее за пределы земляного полотна.

Сопряжение с подходами - это конструктивное выполнение узла примыкания мостового сооружения к насыпи подхода за устоем.

Главнейшим условием устройства сопряжений моста с насыпью является обеспечение плавности въезда автомобилей с подходов на мост на весь период эксплуатации дороги.

Проектирование переходных плит исходит из следующих условий:

Длины плит принимают в зависимости от высоты насыпи: при высоте насыпи 2-4 м – 4 м, при высоте 4-7 м – 6 м, при большей высоте – 8 м.

Переходные плиты должны быть уложены на полную ширину пролетного строения. В пределах тротуаров укладывают плиты укороченной длины, равной 2 м.

Плиты одним концом опирают на прилив шкафной стенки (опираниена верх шкафной стенки не допустимо), другим концом – на лежень.

Расстояние от поверхности покрытия до верха переходной плиты у ее заглубленного конца принимают не менее 45 см.

Переходные плиты могут быть выполнены как в сборном, так и в монолитном варианте. Бетон плит принимают класса В30 по ГОСТ 26633 с маркой по водонепроницаемости W8 по ГОСТ 12730.5 и морозостойкостью F300 по ГОСТ 10060.

Опирание лежня производят на щебеночную подготовку из фракционированного щебня толщиной не менее 40 мм.

Часть насыпи за устоями и конусы отсыпают из дренирующего грунта, с коэффициентом фильтрации не менее 2-3 м/сутки.

Типы сопряжений:

Щебеночно-песчаный клин Применяется в старых баночных мостах малых пролетов с опиранием балок без опорных частей. Перемещение пролетного строения относительно опоры исключается
Переходная плита поверхностного тина Плита укладывается параллельно отметкам проезжей части непосредственно на поверхность земляного полотна
Переходная плита полузагубленная Устраивается при асфальтобетонном покрытии на жестком основании или полужестком с наклоном 1:8 и заглублением концов до 50 см
Переходная плита заглубленная Устраивается при асфальтобетонном покрытии на жестком основании с наклоном 1:12 и заглублением концов до 70 см

Асанбаев Р. 2АД-403

Чем больше ширина промежуточной опоры и её массивность, тем больше нарушается естественный сток воды.

При нормальной работе подмостового русла не происходит резких изменений его положения в плане в пределах мостовых переходов, не подмываются опоры, конуса насыпей и регуляционные сооружения. С этой целью на больших и средних мостах устраивают струенаправляющие дамбы для организации движения водного потока на входе и выходе с низовой зоны моста


Возможные причины нарушения нормальной работы подмостового русла:

1. Недостаточное отверстие моста между точками пересечения с конусами за вычетом ширины опор по верхнему уровню воды;

2. Ошибки проектирования;

4. Неудовлетворительное укрепление откосов, конусов насыпи, дна реки.

Для выявления причин нарушения нормального состояния подмостового русла и неудовлетворительной работы регуляционных сооружений необходимо иметь полные, достоверные статистические данные об условиях протекания воды, паводках, ледоставе и ледоходе. Условия протекания характеризуются горизонтами воды (высоким и меженным) и соответствующими им направлениями течения. При обследовании подмостового русла проверяют его положение в плане (угол косины), профиле и наличие отклонений.

Особенно опасно различные подмывы опор, размывы берегов вблизи насыпей и регуляционных сооружений. В процессе наблидения за профилем дна реки промеряют глубину русла по оси моста и на расстоянии 25 м выше и ниже по течению- зимой перед паводком и весной после спада высокой воды.

В подмостовой зоне на расстоянии 50 м выше и ниже моста не должно прорастать растительности, т. к. это нарушает свободное течение воды и проветриваемость конструкций подмостовой зоны.

Если русло устойчивое, то глубину промеряют только по оси моста; если русло неустойчивое, то промеры выполняют на большом числе створов и вокруг опор. В каждом створе точки промера выбираются таким образом чтобы можно было получить ясное представление о профиле дна реки. При отверстии моста более 50 м – глубину промеряют через каждые 10 м, менее 50 м – через каждые 5 м. Глубину русла измеряют с моста или лодки различными способами: при большой глубине – с помощью тонкого стального троса или веревки с грузом; при очень большой глубине и сильном течении – с помощью эхолота, тогда должны быть выполнены толеровочные кривые; при небольшой глубине – с помощью реек, на нижних концах которой закреплен поддон. На незатопляемых участках профиль русла в створе внимают нивелиром. Результаты промеров привязывают к разделительной полосе и представляют в виде поперечных профилей русла реки, которые для наглядности вычерчивают в разных масштабах (по высоте откладываются в более крупном масштабе)

Таким образом сравнивая профиль, снятых в различное время за период эксплуатации, устанавливают изменения и выявляют места и величины размывов.

Из опыта видно, что большая часть нарушений нормальных условий эксплуатации дорог связано с пропуском паводковых вод через искусственные сооружения, приходящиеся на малые водотоки, т.к. поводки на малых водотоках формируются при выпадении дождей и их трудно заранее предсказать.

Основные виды повреждений переходов через малые водотоки происходят в период паводков: размывы земляного полотна и выходных русел сооружений. Главные причины таких повреждений это возникновение при пропуске паводковых вод чрезмерного подпора перед малыми мостами и трубами из-за недостаточности их отверстий или возникновения наносов грунта в сооружениях и водоотводах. При возможном переливе воды происходят наиболее опасные размывы земляного полотна.

Опасный подпор воды в зоне малых искусственных сооружений может возникнуть из-за недостаточности возвышения низа пролетных строений над РУВВ. Согласно норм проектирования низ пролетных строений должен возвышаться над РУВВ в зависимости от технической категории автомобильной дороги не менее, чем на 0,5-0,75 м; при наличии корчехода – не менее 1,0 м; над максимальным уровнем – не менее 0,25 м.

Строительство моста и других искусственных сооружений с подходами насыпей нарушает свободный режим протекания воды (ламинарный режим) и возникает напорный режим с большими скоростями в паводковый период. В это время наиболее опасны участки к разрушению, размывам земляного полотна и конусов береговых опор. Когда железобетонные укрепления конусов береговых опор выполняют из крупноразмерных и мелкоразмерных плит, тот высокой водой уносит на 30-40 м ниже моста.

Аналогично происходит разрушение упорных брусьев в основаниях конусов береговых опор.

Целесообразно упорные брусья выполнять из армированного монолитного бетона с анкеровкой. Укрепления конусов опор целесообразно (дешевле) выполнять из армированной железобетонной плиты толщенной 8-10 см с обязательным устройством дренирующего слоя.

Местные размывы русел (у промежуточных опор) вызывают подмыв промежуточных опор и таким образом особенно опасны для сооружения в целом. Могут наблюдаться деформации неравномерных осадок промежуточных опор по длине моста, самой опоры по ширине моста. Возможные отклонения опор от вертикали приводит к увеличению эксцентриситета приложений нагрузки и возможна потеря устойчивости отдельных стоек опор. В ряде случаев это приводит к обрушению пролетных строений.

Вывод: все деформации, выявленные после прохождения паводка в подмостовой зоне, необходимо устранить в течении строительного сезона до наступления заморозков; выполнить ремонт конусов; привести в проектное укрепления; размывы грунта заполнить скальным грунтом; вычистить русло от наносов грунта, корчехода, камней и других предметов; убрать растительность выше и ниже моста.