Ток потребления светодиода на 3 вольта. Все о светодиодах: напряжение, ток потребления, мощность, светоотдача, и другие характеристики. ДХО из светодиодов своими руками

Вычисление напряжения питания светодиода является необходимым шагом для любого проекта электроосвещения, и, к счастью, это сделать просто. Такие измерения необходимы, чтобы рассчитать мощность светодиодов, поскольку нужно знать его ток и напряжение. Мощность светодиода рассчитывается путем умножения тока на напряжение. При этом нужно быть крайне осторожным при работе с электрическими цепями, даже при измерениях небольших величин. В статье подробно рассмотрим вопрос о том, как узнать напряжение, чтобы обеспечить правильную работу светодиодных элементов.

Светодиоды существует в разных цветах, бывают двух и трехцветными, мигающими и меняющими цвет. Чтобы пользователь мог запрограммировать последовательность работы светильника, используются различные решения, которые напрямую зависят от напряжения питания светодиода. Для подсветки светодиода требуется минимальное напряжение (пороговое), при этом яркость будет пропорциональна току. Напряжение на светодиоде немного увеличивается с током, потому что есть внутреннее сопротивление. Когда ток слишком высок, диод нагревается и перегорает. Поэтому ток ограничивают до безопасной величины.

Резистор помещается последовательно, поскольку для решетки диода требуется гораздо более высокое напряжение. Если U обратное, ток не течет, но для высокого U (например, 20 В) возникает внутренняя искра (пробой), которая разрушает диод.

Как и для всех диодов, ток протекает через анод и выходит через катод. На круглых диодах катод имеет более короткий провод, а корпус имеет катодную боковую тарелку.

Зависимость напряжения от типа светильника

С увеличением количества светодиодов высокой яркости, предназначенных для обеспечения замены ламп для коммерческого и внутреннего освещения, происходит равное, если не большее, распространение решений по электропитанию. С сотнями моделей от десятков производителей становится сложно понять все перестановки входных/выходных напряжений питания светодиода и значений выходного тока/мощности, не говоря уже о механических размерах и многих других функциях для затемнения, дистанционного управления и защиты цепи.

На рынке имеется большое количество различных светодиодов. Их различие определены множеством факторов, в производстве светодиодов. Полупроводниковый макияж является фактором, но технология изготовления и инкапсуляция также играют основную роль в определении характеристик светодиодов. Первые светодиоды были круглыми, в виде моделей C (диаметр 5 мм) и F (диаметр 3 мм). Затем в реализацию поступили прямоугольные диоды и блоки, объединяющие несколько светодиодов (сетей).

Полусферическая форма немного напоминает лупу, которая определяет форму светового луча. Цвет излучающего элемента улучшает диффузию и контрастность. Наиболее распространенные обозначения и форма ЛЭД:

  • A: красный диаметр 3 мм в держателе для CI.
  • B: красный диаметр 5 мм, используемый в передней панели.
  • C: фиолетовый 5 мм.
  • D: двухцветный желтый и зеленый.
  • E: прямоугольный.
  • F: желтый 3 мм.
  • G: белый высокая яркость 5 мм.
  • H: красный 3 мм.
  • K- анод: катод, обозначенный плоской поверхностью во фланце.
  • F: 4/100 мм анодный соединительный провод.
  • C: светоотражающая чашка.
  • L: изогнутая форма, действующая как увеличительное стекло.

Спецификация устройств

Свод различных параметров светодиодов и напряжения питания находится в спецификациях продавца. При выборе светодиодов для конкретных применений необходимо понимать их различие. Существует множество различных спецификаций светодиодов, каждый из которых будет влиять на выбор конкретного вида. Основой спецификаций светодиодов являются цвет, U и сила тока. LEDS имеют тенденцию обеспечивать один цвет.

Цвет, излучаемый светодиодом, определяется с точки зрения его максимальной длины волны (lpk), то есть длины волны, которая имеет максимальную светоотдачу. Обычно вариации процесса дают пиковые изменения длины волны до ± 10 нм. При выборе цветов в спецификации LED стоит помнить, что человеческий глаз наиболее чувствителен к оттенкам или цветовым вариациям вокруг желтой/оранжевой области спектра - от 560 до 600 нм. Это может повлиять на выбор цвета или положения светодиодов, что напрямую связано с электрическими параметрами.

При работе LED имеют заданное падение U, которое зависит от используемого материала. Напряжение питания светодиодов в лампе также зависит от уровня тока. Светодиоды являются устройствами, управляемыми током, а уровень света является функцией тока, рост его увеличивает выход света. Необходимо обеспечить такую работу устройства, чтобы максимальный ток не превышал допустимый предел, что может привести к чрезмерному рассеиванию тепла внутри самого чипа, уменьшению светового потока и сокращению срока службы. Для большинства LED требуется внешний резистор, ограничивающий ток.

Некоторые светодиоды могут включать последовательный резистор, поэтому указывается, какое напряжение питания светодиодов необходимо. Светодиоды не допускают большого обратного U. Оно никогда не должно превышать его заявленное максимальное значение, которое обычно довольно мало. Если есть вероятность появления обратного U на светодиоде, то лучше встроить защиту в схему, чтобы предотвратить поломку. Обычно это могут быть простые диодные схемы, которые обеспечат адекватную защиту любого светодиода. Не нужно быть профессионалом, чтобы это усвоить.

Светодиоды освещения имеют токовое питание, а их световой поток пропорционален току, протекающему через них. Ток связан с напряжением питания светодиодов в лампе. Несколько диодов, соединенные последовательно, имеют равный ток, протекающий через них. Если они соединены параллельно, каждый светодиод получает одинаковое U, но различные текущие потоки через них из-за дисперсии эффекта на вольт-амперной характеристики. В результате каждый диод излучает другой световой поток.

Поэтому при подборе элементов необходимо знать, какое напряжение питания у светодиодов. Для работы каждого на его клеммах требуется приблизительно 3 вольта. Например, 5-диодная серия требует примерно 15 вольт на клеммах. Чтобы подавать регулируемый ток при достаточном U, LEC использует электронный модуль, называемый драйвером.

Существует два решения:

  1. Внешний драйвер устанавливается снаружи светильника, с безопасным сверхнизким напряжением источника питания.
  2. Внутренний, встроенный в фонарь, т. е. субъединица с электронным модулем, регулирующим ток.

Этот драйвер может питаться от сети 230 В (класс I или класс II) или с безопасным сверхнизким U (класс III), например, при напряжении 24 В. LEC рекомендует второе решение для электроснабжения, поскольку оно дает 5 основных преимуществ.

Преимущества подбора напряжения ЛЭД

Правильный расчет напряжения питания светодиодов в лампе имеет 5 ключевых преимуществ:

  1. Безопасное сверхнизкое U, возможно, независимо от количества светодиодов. Светодиоды должны устанавливаться последовательно, чтобы гарантировать одинаковый уровень тока в каждом из них из одного источника. В результате, чем больше светодиодов, тем выше напряжение на клеммах светодиодов. Если это устройство с внешним драйвером, тогда сверхчувствительное напряжение безопасности должно быть значительно выше.
  2. Интеграция драйвера внутри фонарей позволяет обеспечить полную установку системы безопасным сверхнизким напряжением (SELV), независимо от количества источников света.
  3. Более надежная установка в стандарте проводки для светодиодных ламп, соединенных параллельно. Драйверы обеспечивают дополнительную защиту, особенно от повышения температуры, что гарантирует более длительный срок службы при соблюдении напряжения питания светодиодов для разных типов и тока. Более безопасный ввод в эксплуатацию.
  4. Интеграция питания светодиодов в драйвер позволяет избежать неправильного обращения в полевых условиях и улучшает их способность выдерживать горячее подключение. Если пользователь подключит светильник со светодиодами только к внешнему драйверу, который уже включен, это может вызвать перенапряжение светодиодов при их подключении и, следовательно, их разрушение.
  5. Простое обслуживание. Любые технические проблемы легче видны в светодиодных лампах с источником напряжения.

Когда падение U на сопротивлении важно, нужно правильно подобрать резистор, способный рассеивать требуемую мощность. Потребление тока в 20 мА может показаться низким, но рассчитанная мощность говорит об обратном. Так, например, для падения напряжения на 30 В резистор должен рассеивать 1400 Ом. Расчет рассеиваемой мощности P = (Ures x Ures) / R,

  • P - значение мощности, рассеиваемой резистором, которая ограничивает ток в светодиоде, Вт;
  • U - напряжение на резисторе (в вольтах);
  • R - значение резистора, Ом.

P = (28 x 28) / 1400 = 0,56 Вт.

Напряжение питания светодиода 1 вт не выдержало бы перегрев в течение длительного времени, да и 2 Вт тоже слишком быстро выходили бы из строя. Для этого случая необходимо параллельно подключить два резистора 2700 Ом / 0,5 Вт (или два резистора 690 Ом / 0,5 Вт в ряд) для равномерного распределения рассеивания тепла.

Тепловой контроль

Поиск оптимальной мощности для системы поможет узнать больше о контроле тепла, который понадобится для надежной работы ЛЭД, поскольку светодиоды выделяют тепло, которое может быть очень опасным для устройства. Слишком много тепла заставит светодиоды производить меньше света, а также сокращают время эксплуатации. Для светодиода с напряжением питания 1 вт мощности рекомендуется искать радиатор с параметрами 3 квадратных дюйма для каждого ватта светодиодов.

В настоящее время светодиодная промышленность растет довольно быстрыми темпами и важно знать разницу в светодиодах. Это общий вопрос, поскольку изделия могут варьироваться от очень дешевых до дорогих. Нужно быть осторожными в покупке дешевых светодиодов, так как они и могут работать отлично, но, как правило, не работают долго и быстро горят из-за плохих параметров. При изготовлении светодиодов производитель указывает в паспортах характеристики со средними значениями. По этой причине покупатели не всегда знают точные характеристики светодиодов по световому потоку, цвету и прямому напряжению.

Определение прямого напряжения

Перед тем, как узнать напряжение питания светодиода, устанавливают соответствующие настройки мультиметра: ток и U. Перед тестированием устанавливают сопротивление на самое высокое значение, чтобы избежать перегорания светодиода. Это можно сделать просто: зажимают выводы мультиметра, регулируют сопротивление до тех пор, пока ток не достигнет 20 мА и фиксируют напряжение и ток. Для того чтобы измерить прямое напряжение светодиодов понадобятся:

  1. Светодиоды для проверки.
  2. Источник U светодиода с параметрами выше, чем светодиодный индикатор постоянного напряжения.
  3. Мультиметр.
  4. Зажимы Alligator, чтобы удержать светодиод на тестовых проводах для определения напряжения питания светодиодов в светильниках.
  5. Провода.
  6. Переменный резистор 500 или 1000 Ом.

Первичный ток синего светодиода составлял 3,356 В при 19,5 мА. Если используются напряжение 3,6 В, значение резистора для использования рассчитывают по формуле R = (3,6 В-3,356 В) / 0,0195 А) = 12,5 Ом. Для измерения светодиодов высокой мощности выполняют ту же процедуру и устанавливают ток, быстро удерживая значение на мультиметре.

Измерение напряжения питания smd светодиодов высокой мощности с прямым током> 350 мА может быть немного сложным, потому что, когда они быстро нагреваются, U резко падает. Это означает, что ток будет выше при заданном U. Если пользователь не успеет, он должен будет остудить светодиод до комнатной температуры, прежде чем снова выполнять измерение. Можно использовать 500 Ом или 1 кОм. Чтобы обеспечить грубую и точную настройку или последовательно подключать переменный резистор более высокого и низкого диапазона.

Альтернативное определение вольтажа

Первым шагом для расчета потребления энергии светодиодами является определение напряжения светодиода. Если нет мультиметра под рукой, можно изучить данные производителя и найти паспортное U светодиодного блока. В качестве альтернативы можно оценить U, основываясь на цвете светодиодов, например, напряжение питания белого светодиода 3,5 В.

После того, как замерено напряжение светодиода, определяют ток. Его можно измерить непосредственно с помощью мультиметра. Данные завода- изготовителя дают приблизительную оценку тока. После этого можно очень быстро и легко вычислить энергопотребление светодиодов. Чтобы рассчитать потребление энергии светодиодом, просто умножают U светодиода (в вольтах) на ток светодиода (в амперах).

Результат, измеренный в ваттах - это мощность, которую используют светодиоды. Например, если светодиод имеет U 3,6 и ток 20 миллиампер, он будет использовать 72 милливатт энергии. В зависимости от размера и масштаба проекта показания напряжения и тока могут измеряться в меньших или больших единицах, чем базовый ток или ватт. Может потребоваться преобразования единиц. При выполнении этих расчетов помнят, что 1000 милливатт равно одному ватту, а 1000 миллиампер равно одному амперу.

Чтобы протестировать светодиод и узнать, работает ли он и какой выбрать цвет - применяется мультиметр. Он должен иметь диодную тестовую функцию, которая обозначается символом диода. Затем для тестирования закрепляют измерительные шнуры мультиметра на ножках светодиода:

  1. Подключают черный шнур на катоде (-) и красный шнур на аноде (+), если пользователь ошибается - светодиод не светится.
  2. Подают небольшой ток датчикам и если видно, что светодиод слегка светится, то он исправный.
  3. При проверке мультиметра нужно учитывать цвет светодиода. Например, желтый (янтарный) светодиодный тест - пороговое напряжение светодиода 1636 мВ или 1,636 В. Если протестирован белый светодиод или синий светодиод, пороговое напряжение выше 2,5 В или 3 В.

Для проверки диода показатель на дисплее должен находиться в пределах от 400 до 800 мВ в одном направлении и не показывать в обратном направлении. Нормальные светодиоды имеют пороговые U, описанные в таблице ниже, но для того же цвета могут иметь значительные различия. Максимальный ток составляет 50 мА, но рекомендуется не превышает 20 мА. При 1-2 мА диоды уже хорошо светятся. Пороговое U светодиода

Если аккумулятор полностью заряжен, то при 3,8 В ток составляет всего 0,7 мА. В последние годы светодиоды достигли значительного прогресса. Существуют сотни моделей, диаметром 3 мм и 5 мм. Есть более мощные диоды диаметром 10 мм или в специальных корпусах, а также диоды для монтажа на печатной плате длиной до 1 мм.

Светодиоды обычно считаются устройствами постоянного тока, работающими от нескольких вольт постоянного тока. В маломощных приложениях с небольшим количеством светодиодов это вполне приемлемый подход, например, в мобильных телефонах, где питание подается от аккумулятора постоянного тока, но другие приложения, например линейная система освещения полос, простирающаяся на 100 м вокруг здания, не может функционировать на такой схеме.

Привод постоянного тока страдает от потерь на расстоянии, что требует использования более высоких U привода с самого начала, а также дополнительных регуляторов, которые теряют электроэнергию. Переменный ток упрощает использование трансформаторов для понижения U до 240 В или 120 В переменного тока от киловольт, используемых в линиях электропередачи, что гораздо более проблематично для постоянного тока. Для запуска любых напряжением питания из сети (например, 120 В переменного тока) требуется электроника между источником питания и самими устройствами для обеспечения постоянного U (например, 12 В постоянного тока). Важна способность управления несколькими светодиодами.

Lynk Labs разработала технологию, которая позволяет осуществлять питание светодиода от переменного напряжения. Новый подход заключается в разработке AC-светодиодов, которые могут работать непосредственно от источника питания переменного тока. Многие автономные светодиодные светильники просто имеют трансформатор между настенной розеткой и приспособлением для обеспечения требуемого постоянного U.

Ряд компаний разработали светодиодные лампочки, которые ввинчиваются непосредственно в стандартные разъемы, но они неизменно также содержат миниатюрные схемы, которые преобразуют переменный ток в постоянный, прежде чем поступать на светодиоды.

Стандартный красный или оранжевый светодиод имеет пороговое U от 1,6 до 2,1 В, для желтого или зеленого светодиодов напряжение от 2,0 до 2,4 В, а для синего, розового или белого - это напряжение примерно от 3,0 до 3,6 В. В приведенной ниже таблице приведены некоторые типичные значения напряжений. Значения в скобках соответствуют самым близким нормализованным значениям в серии E24.

Характеристики напряжения питания для светодиодов показаны в таблице ниже.

Обозначения:

  • STD - стандартный светодиод;
  • HL - светодиодный индикатор высокой яркости;
  • FC - низкого потребления.

Этих данных достаточно, чтобы пользователь самостоятельно мог определить необходимые параметры устройств для светового проекта.

Несмотря на то что электрический параметр №1 для светодиода – это номинальный ток, часто для расчётов необходимо знать напряжение на его выводах. Под понятием «напряжение светодиода» понимают разницу потенциалов на p-n-переходе в открытом состоянии. Оно является справочным параметром и вместе с другими характеристиками указывается в паспорте к полупроводниковому прибору. 3, 9 или 12 вольт… Часто в руки попадают экземпляры, о которых ничего не известно. Так как узнать падение напряжения на светодиоде?

Теоретический метод

Прекрасной подсказкой в этом случае является цвет свечения, внешняя форма и размеры полупроводникового прибора. Если корпус светодиода выполнен из прозрачного компаунда, то цвет его остаётся загадкой, разгадать которую поможет мультиметр. Для этого переключатель цифрового тестера переводят в положение «проверка на обрыв» и щупами поочерёдно касаются выводов светодиода. У исправного элемента в прямом смещении будет наблюдаться небольшое свечение кристалла. Таким образом, можно сделать вывод не только о цвете свечения, но и о работоспособности полупроводникового прибора. Существуют и другие способы тестирования излучающих диодов, о которых подробно написано в .

Светоизлучающие диоды разных цветов изготавливают из различных полупроводниковых материалов. Именно химический состав полупроводника во многом определяет напряжение питания светодиодов, точнее, падение напряжение на p-n-переходе. В связи с тем, что в производстве кристаллов используют десятки химических соединений, точного напряжения для всех светодиодов одного цвета не существует. Однако есть определённый диапазон значений, которых зачастую достаточно для проведения предварительных расчетов элементов электронной цепи. С одной стороны, размер и внешний вид корпуса не влияют на прямое напряжение светодиода. Но,с другой стороны. через линзу можно увидеть количество излучающих кристаллов, которые могут быть соединены последовательно. Слой люминофора в SMD светодиодах может скрывать целую цепочку из кристаллов. Ярким примером является миниатюрные многокристальные светодиоды от компании , падение напряжения на которых зачастую значительно превышает 3 вольта.

В последние годы появились белые SMD светодиоды, в корпусе которых размещено 3 последовательно соединённых кристалла. Их часто можно встретить в китайских светодиодных лампах на 220 вольт. Естественно убедиться в исправности LED-кристаллов в такой лампе при помощи мультиметра не удастся. Стандартная батарейка тестера выдаёт 9 В, а минимальное напряжение срабатывания трёхкристального белого светоизлучающего диода – 9,6 В. Также встречаются двухкристальная модификация с порогом срабатывания от 6 вольт.

Узнать все технические характеристики светодиода можно из интернета. Для этого нужно скачать datasheet на схожую по внешним признакам модель, обязательно такого же цвета свечения, сверить паспортные размеры с действительными и выписать номинальные значения тока и падения напряжения. Следует учитывать, что данная методика весьма приблизительна, так как в одинаковом корпусе могут быть изготовлены светодиоды на 20 мА и на 150 мА с разбросом напряжения до 0,5 вольт.

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.
Здесь всё просто: резистор ограничивает ток, а вольтметр отслеживает прямое напряжение светодиода. Плавно увеличивая напряжение от источника питания, наблюдают за ростом показаний на вольтметре. В момент достижения порога срабатывания светодиод начнёт излучать свет. В какой-то момент яркость достигнет номинального значения, а показания вольтметра перестанут резко нарастать. Это означает, что p-n-переход открыт, и дальнейший прирост напряжения с выхода БП будет прикладываться только к резистору.

Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Читайте так же

Разбирая на детали старые или нерабочие устройства часто можно найти светодиоды. Однако в большинстве случаем на них отсутствует какая-либо маркировка или другие опознавательные знаки. Поэтому определить их параметры по справочнику попросту невозможно. Отсюда возникает вполне естественный вопрос: как определить параметры светодиода?

Опытные электронщики таким вопросом практически не задаются, поскольку могут с достаточной точностью определить параметры такого полупроводникового прибора, ориентируясь лишь на его внешний вид и зная некоторые нюансы, присущие большинству светодиодов. Эти нюансы рассмотрим и мы.

Электрические параметры светодиодов

Первым делом заметим, что светодиод характеризуется тремя электрическими параметрами (световые характеристики мы рассматривать не будем):

1) падение напряжения, измеряемое в вольтах. Когда говорят 2-х вольтный или 3-х вольтный светодиод, то это имеется в виду данный параметр;

2) номинальный ток. Часто его значение приводится в справочниках в миллиамперах. 1 мА = 0,001 А;

3) мощность рассеяния – это мощность, которую способен рассеять (выделить в окружающую среду) полупроводниковый прибор не перегреваясь. Измеряется в ваттах. Значение данного параметра с высокой точностью можно определить самостоятельно, умножив ток на напряжение.

В большинстве случае достаточно знать два первых параметра, а то и вовсе только номинальный ток.

Условно я выделил два основных способа, с помощью которых можно с высокой долей вероятности узнать или определить указанные параметры. Первый способ – информационный. Это наиболее быстрый и простой способ. Одна он не всегда дает положительный результат. Второй способ, нам – электронщикам, более интересный. Я назвал его «электрический», так как ток и напряжение будут определяться с помощью мультиметра (тестера). Рассмотрим подробно оба варианта.

Как определить параметры светодиода по внешнему виду?

Самый легкий путь – это узнать характеристики светодиода по его внешнему виду. Для этого достаточно набрать в строке поисковой системы такую фразу: «купить светодиод». Далее из предоставленного списка следует выбрать наиболее крупный интернет магазин и найти соответствующий раздел каталога. После чего внимательно просмотреть все имеющиеся позиции и если вам улыбнется удача, то вы найдете то, что ищете. Как правило, в серьёзных интернет-магазинах, где продаются радиоэлектронные элементы, на каждую позицию имеется соответствующая документация, даташит или приводятся основные характеристики. Сопоставив по внешнему виду имеющийся светодиод с тем, что в каталоге, можно таким образом узнать его характеристики.

Следующим подходом пользуются более опытные электронщики. Однако в нем нет ничего сложного. Преимущественное большинство светодиодов разделяется на индикаторные и общего назначения. Индикаторные, как правило, менее ярко светят, чем остальные. Это и понятно, ведь для индикации очень яркий свет не нужен. Индикаторные светодиоды применяются для сигнализации работы различных электронных устройств. Например, при включении в розетку, они показывают, что устройство находится под напряжением. Они встречаются в чайниках, ноутбуках, выключателях, зарядных устройствах, компьютерах и т.п. Электрические параметры их вне зависимости от внешнего вида следующие: ток – 20 мА = 0,02 А; напряжение в среднем 2 В (от 1,8 В до 2,3 В).

Светодиоды общего назначения светят ярче предыдущих, поэтому могут использоваться в качестве осветительных приборов. Однако для индикации тоже пойдут, если снизить ток. Как ни странно, но преобладающее большинство и таких светодиодов имеют значение номинального тока потребления тоже 20 мА. А вот напряжение их может находиться в пределах от 1,8 до 3,6 В. В этом классе находятся и сверхяркие светодиоды. При том же токе напряжение у них, как правило выше – 3,0…3,6 В.

В целом светодиоды подобного типа имеют стандартный размерный ряд, основным параметром которого есть диаметр круга линзы или ширина и толщина стороны, если линза прямоугольной формы.

Диаметр линзы, мм: 3; 4,8; 5; 8 и 10.

Стороны прямоугольника, мм: 3×2; 5×2.

Как определить параметры светодиода мультиметром?

Теперь, когда мы знаем, что номинальный ток многих светодиодов 20 мА, то достаточно просто определить их напряжение опытным путем. Для этого нам понадобится блок питания с регулировкой напряжения и мультиметр. Соединяем последовательно блок питания со светодиодом и мультиметром, предварительно установленным в режим измерения тока.

Блок питания изначально должен быть установлен на минимальное значение. Далее, изменяя величину подводимого к светодиоду напряжения, устанавливаем по показанию мультиметра ток 20 мА. После этого фиксируем значение величины подводимого напряжения либо по штатному вольтметру блока питания либо с помощью мультиметра, установленного в режим измерения напряжения.

Для страховки светодиода лучше последовательно к нему подсоединить резистор ом на 300. Но в этому случае напряжение необходимо фиксировать непосредственно на нем.

Поскольку не у всех есть блок питания с регулировкой напряжения, то можно определять параметры и исправность маломощных светодиодов с помощью следующих элементов:

  1. Крона (батарейка на 9 В).
  2. Резистор ом на 200.
  3. Переменный резистор, он же потенциометр на 1 кОм.
  4. Мультиметр.

Испытуемый светодиод соединяем последовательно с постоянным резисторов, потом с переменным, далее с кроной и щупами мультиметра, установленного в режим измерения постоянного тока.

Очередность соединения всех элементов не имеет никакого значения, поскольку цепь последовательная, а это значит, что через все компоненты протекает один и тот же ток.

Изначально переменным резистором следует установить минимальное напряжение, а потом постепенно увеличивать до тех пор, пока ток не достигнет 20 мА. После этого выполняется измерение напряжения.

С помощью рассмотренного способа не получится определить параметры мощного светодиода вследствие протекания значительного тока через резисторы. В результате чего последние могут перегреться. Однако определить исправность его вполне возможно.

Давно прошли те времена, когда светодиоды применялись исключительно в качестве световых индикаторов. Сегодня это достойная альтернатива привычным в быту и промышленных условиях лампам накаливания. Благодаря расширяющемуся спектру применения LED-приборов открывается безграничный простор в сфере наполнения искусственным светом улиц и помещений. Сегодня поговорим об этом на .

Разновидности светоизлучающих диодов

В основе работы LED-приборов лежит процесс пропускания фотонов через полупроводниковый кристаллик. Именно от применяемого материала зависит цвет возникающего свечения. Совсем не светофильтры делают свечение красным или синим.

Цвет свечения светодиодов зависит от материала кристалла

Светодиоды делят на две группы по способу применения:

  • Индикация и декорация . К этой категории относятся цветные светодиоды. Их помещают в просвечивающийся корпус. Для управления техникой на расстоянии применяют модели с инфракрасными индикаторами.
  • Освещение. В этом случае используют LED-источники белого свечения. Соответственно потребностям подбирают теплые или холодные оттенки.

По способу монтажа выделяют осветительные светодиоды:

  • SMD . При такой модификации кристаллик расположен на специальной подложке, которая помещается в корпус. Контакты соединяются. При поломке одного кристаллика его заменяют, восстанавливая работу всей системы.

  • ОСВ . В таком устройстве множество кристаллов размещены на одной плате. Все они покрытых люминофором. Степень свечения таких ламп высокая, а производство недорогое. Систему придется заменить полностью даже при выходе из строя всего одного светодиода.

Общая характеристика LED-источников

Как выбрать светодиод нужной конфигурации? Для этого важно разобраться в основных характеристиках. Одна из них - ток потребления. Под эту величину подбираются стабилизаторы и ограничители. Для расчетов нужно знать напряжение. Чтобы эффективно заменить LED-источниками лампы накаливания нужно вычислить мощность.

При создании определенного интерьера важно учитывать размер светоизлучающего диода, а также оттенок светового потока. Имея дело с LED-источниками, принято брать во внимание угол свечения. Разобравшись в перечисленных параметрах, можно подобрать наиболее подходящий светодиод.


При выборе светодиодов важно учитывать такие характеристики: сила тока, напряжение, мощность, эффективность, угол свечения, размер устройства

Ток потребления LED

Стабилизаторы тока очень важны в работе светодиодов. Даже небольшое колебание величины тока в большую сторону приведет к изменению излучаемого кристаллами светового оттенка на более холодный и преждевременному выходу осветительного устройства из строя. Значительный скачок электрического тока приводит к мгновенному перегоранию диода.

LED –лампы всегда снабжают стабилизаторами для преобразования тока. Отдельный светоизлучающий диод нужно подключать с применением резистора для ограничения тока.
Для одного кристалла обычно необходим ток в 0,02 А. Для четырех кристаллов потребуется соответственно больший показатель - 0,08 А.


Светодиоды будут долго и слаженно работать только с применением ограничителя тока

Совет! Очень важно правильно подобрать ограничительный резистор для светодиода. Облегчить процедуру поможет специально разработанный калькулятор, находящийся в свободном доступе в интернете.

Напряжение на светодиоде

В случае с LED-источниками, говоря о напряжении, имеют в виду ту величину, которая остается после прохождения тока, так сказать, на выходе. Зная ее, определяют остаточное напряжение на кристалле.
Напряжение у светоизлучающих диодов зависит от материалов, применяемых в качестве полупроводников. Возможно ли определить это самостоятельно?

Приблизительное значение можно установить даже «на глаз». Так, если диод светит желтым или, к примеру, красным цветом - напряжение находится в пределах 1,8-2,4 Вольт. Его величина при синем свечении больше - приблизительно 3 Вольта.


Напряжение при синем свечении — 3 В

Важно! Ток должен соответствовать номинальному напряжению LED-источника. В противном случае часть из них может сгореть или выдавать менее яркое свечение.

Мощность и эффективность светодиодов

Как подобрать диодную замену лампы накаливания, ориентируясь на мощность? Часто можно встретить подробно расписанные таблицы, но все гораздо проще. Необходимо мощность лампы накаливания поделить на 8, и получим необходимую мощность светодиода. Так, вместо лампы мощностью 75 Вт необходимо подобрать светодиодный прибор, мощностью 10 Вт.


Необходимую мощность светодиода определяем делением мощности лампы накаливания на 8

В создании освещения с помощью системы светодиодов необходимо учитывать такой момент, как эффективность. Она рассчитывается путем деления показателя светового потока на мощность. У лампы накаливания он составляет 10-12 лм/Вт, а у светодиодного устройства - 130-140 лм/Вт.

Светоотдача, угол рассеивания

Что касается светоотдачи, то сравнить показатели принципиально разных устройств довольно сложно. Для ориентировки: светодиоды диаметром 5 мм дают световой поток 1-5 лм. Лампа накаливания на 70 Вт дает 750 лм.

Кроме прочего, заботясь об освещенности помещения, важно учитывать угол рассеивания. У светодиодов он может быть от 20 до 120 градусов. Самый яркий свет оказывается в центре угла, а к краям они рассеиваются. Таким образом, светодиоды часто подходят для освещения не целого помещения, а конкретного места. При этом не требуется больших затрат мощности.

На упаковке каждого светодиодного устройства для освещения имеется маркировка (4 цифры), обозначающая температуру свечения. 1800 К - это красный, 3300 К - желтый, а 7500 - синий. Для белого света применяются различные величины в зависимости от оттенка. Самые холодные находятся ближе к значению синего. Цветные светодиоды могут найти применение как декоративные элементы и в качестве приборов для досвечивания растений.

  • Теплый свет - для жилых домов, школ и офисов.
  • Нейтральный (дневной) свет - для производственных построек.
  • Холодный свет - наружное освещение и карманные фонарики.

Температура свечения светодиодов

SMD-диоды: сведения, типоразмеры

Аббревиатура SMD применяется для устройств поверхностного монтажа. Диодный чип при их производстве устанавливается на печатную плату. Эти последователи корпусных диодов, которые обошли предшественников по мощности излучаемого света, равномерному отводу тепла и другим характеристикам.

Подбор SMD осуществляют по размеру. Он представлен в виде четырехзначного числа. Например, SMD 3014 - это 3,0 мм × 1,4 мм. Основные параметры каждого из них разнятся. Наиболее популярные: SMD 2835, SMD 5050, SMD 5730.


Светодиоды SMD

SMD 2835

Структурной особенностью светодиодного модуля SMD 2835 является прямоугольная форма и, соответственно, достаточно широкая площадь излучения. Она выше, чем у формата 3528, имеющего круглую форму. Высота SMD 2835 - 0,8 мм, а светоотдача - 50 лм.


Светодиод SMD 2835

Светодиоды SMD 2835 характеризуются сверхпрочным корпусом, выдерживающим 240 С. За 3 тысячи часов функционирования происходит всего 5-процентная деградация излучения. Cветодиодный кристалл имеет t- 130 C. Max рабочий ток - 0,18 А. По температуре свечения SMD 2835 выпускается в четырех вариантах: от 4000 К до 7500 К. Для качественного освещения помещения важно знать, что SMD 2835 холодных оттенков светят ярче.

SMD 5050

Конструкция SMD 5050 включает три кристалла одинакового типа. Их параметры аналогичны параметрам предыдущего. Для долгой и слаженной работы поступающий ток должен быть в пределах 0,06 А.


Светодиод SMD 5050

Светоотдача SMD 5050 - 18-21 лм, напряжение - 3-3,3 В, мощность - 0,21 Вт. Цвет свечения не ограничивается оттенками белого. В одном приборе могут сочетаться сразу несколько цветов. SMD 5050 с помощью контроллеров можно настроить на плавное изменение цвета. Регулируется также яркость.

SMD 5730

Размеры корпуса SMD 5730 ясны из цифрового обозначения. Что касается деградации, то она составляет 1 % за 3000 часов. Такой важный во многих случаях показатель, как угол свечения, равен 120 градусам.

Этот тип светодиодов на фоне остальных выгодно отличает:

  • использование новых высококачественных материалов;
  • высокая мощность и эффективность;
  • удлиненный срок службы;
  • устойчивость в условиях сырости, вибрации и нестабильности температуры.

    • Светодиод SMD 5730

SMD 5730 делят на два вида:

1. SMD 5730 – 0,5 Вт. Пост. ток — 0,15 А, импульс. - до 0,18 А; свет. поток - 45 лм.
2. SMD 5730 – 1 Вт. Пост. ток - 0,35 А, импульс.- 0, 8 А. свет. поток - 110 лм.

Светодиоды Cree - главные особенности

Американская компания Cree выпускает сверхмощными и сверхяркими светодиодами нового поколения. Одной из ведущих линейкой, выпускаемых компанией, является Xlamp. Здесь можно найти однокристальные и многокристальные модели. Первые компании удалось создать с увеличенным углом свечения, то есть хорошим освещением по краям.

Многокристальные отличаются высокой светоотдачей при небольших габаритах. По мощности их делят на группы:

  1. до 4 Вт
  2. свыше 4 Вт.

Сверхяркий многокристальный светодиод Cree
Подключение LED к 220 В

Подключение LED-приборов к сети 220 В производят по двум основным схемам:

1. Через драйвер . От мощности драйвера зависит количество светоизлучающих элементов, которые можно подключить. Резистор отсутствует.
2. С помощью блока питания. В схему включают резистор, иначе устройство быстро перестанет исполнять функцию. Очень важно подобрать резистор с соответствующим номиналом.


Принцип подключения LED-источника к сети 220 В
Сопротивление - принципы расчета для светодиодов

Формула сопротивления включает напряжение (U) и силу тока (I) :

Разберем на стандартном примере подключения LED-источника с параметрами: 3 В и 0,02 А. По формуле получается 100 Ом. Полученный результат - ориентир в выборе ограничителя.

Во многих случаях рассчитанное по формуле сопротивление не относится к стандартным характеристикам резисторов. Например, может получиться величина в 128 Ом. Что делать тогда? В таком случае подбирать необходимо резистор с самым близким сопротивлением в большую сторону. Это хорошо скажется на ресурсе светодиода. Снижение светового потока будет минимальным - до 10 %.

Совет! Удобно проводить точные расчеты с помощью специально разработанных калькуляторов. Достаточно только правильно вбить параметры, чтобы получить сопротивление, которое должен иметь ограничитель.


Подключение светодиода с резистором

Можно применять как параллельное, так и последовательное подключение. При использовании более 5 разных по характеристике устройств нужно подбирать резистор под каждый. Если будет использоваться один на все - некоторые из светодиодов будут излучать менее мощный свет, а работа такого устройства не будет длительной. Это не относится к LED-источникам с одинаковыми параметрами.

При последовательном подключении вся цепь LED-устройств использует ток, необходимый для одного из них; при параллельном - требуемое для суммированного потребления каждого диода.

Подключение светоизлучающего диода к 12 В

Некоторые LED- приборы сконструированы с резистором. В этом случае можно совершенно без проблем подключить их к 12 или 5 В. Но если светоизлучающие диоды по задумке производителя не включают резисторы (это встречается чаще всего), необходимо подобрать подходящий ограничитель тока. Это возможно при точном знании характеристик подключаемых диодов. Требуемая формула:

В качестве примера возьмем светоизлучающий диод с такими характеристиками: 2 В, 0,02 А (I ). При подключении диода к 12 Вольтам нужно погасить 10 В, это наше R . Итак:

10/0,02=500 Ом

Но ограничительного резистора с таким номиналом не найти в продаже. Выход есть: необходимо приобрести ближайший в большую сторону - 510 Ом.

Необходимо также вычислить мощность резистора. Для этого пользуются формулой:

В нашем случае получаем:

10*0,02=0,2 Вт

Значит, в данной ситуации подойдет ограничительный резистор на 0,25 Вт.

Проверка LED-источника мультиметром

Тестирование лучше производить в затемненном помещении, так как свет, который нужно будет уловить взглядом, может оказаться достаточно слабым. Мультиметр создан для тестирования LED-устройств любой конфигурации.

Первый шаг - установка устройства для тестирования в режим прозвона. Далее соединяем щупы с выводами: когда красный будет касаться катода появится «1», при смене положения щупов - светодиод начнет светиться.


Тестирование светодиода мультиметром

Один из часто задаваемых вопросов: как проверить светоизлучающий диод не выпаивая? Это делают так: к обоим щупам припаивают отрезки металлической скрепки. При этом важно позаботиться об изоляции. Дальше проводится тестирование светодиодов с помощью щупов мультиметра без выпаивания по стандартной схеме.

Стабилизатор тока для LED

Для длительной бесперебойной работы одного LED-устройства или целой цепи, следует позаботиться о стабильности питания. Особенно чувствительны к перемене тока белые светодиоды. Если показатель будет превышать норму в течение двух часов, они выйдут из строя. Чтобы все диоды в цепи создавали одинаковое по интенсивности свечение, нужно позаботиться, чтобы каждый получал одинаковый ток.

При подключении к 220 В чаще всего применяют стабилизатор LM317. Это выгодный и простой вариант. Резистор требуется в единственном экземпляре. Ток стабилизируется на 1 А и 0,1 А.


Схема подключения мощного светодиода через стабилизатор LM317
Устройства из светодиодов своими руками
ДХО для автомобиля из LED-устройств

В условиях плохой видимости риск автомобильных аварий на дороге резко увеличивается. Чтобы его снизить применяют дневные ходовые огни. Они делают автомобиль боле заметным встречным водителям и пешеходам в дневное время. Подойдут далеко не любые LED-источники, ведь ДХО должны соответствовать ГОСТу.


ДХО из светодиодов — схема подключения

Можно поступить так: взять алюминиевую плату и прикрепить к ней светодиоды необходимых параметров с помощью теплопроводного клея. На каждый диод устанавливается правильно подобранные линзы. Вывод проводов можно обеспечить в любую сторону. Созданный модуль располагают внутри профиля. Найти подходящую схему подключения не составит труда.


ДХО из LED-источников

Схемы мигающих светодиодов

В чем секрет мигания LED-источников? В изменении питания на выводах устройства. Стандартная схема представлена ниже. Она может быть реализована только при подключении к 12 В. Когда конденсатор накапливает 9-10 В, транзистор передает энергию светодиоду.


Схема мигающих светодиодов

Светомузыка из светодиодов

Схема запитывается от 6-12 В. Эффект светомузыки при схеме с одним LED-источником будет достигаться только при условии определенного уровня звука. Для полноценного эффекта создают трехканальную схему. В этом случае нужен источник 6 В. Существует множество вариантов: одноцветная и RGB лента, плавное включение, бегущие огни.

Стабилизация напряжения в доме: выбираем стабилизатор Обустраиваем водоснабжение частного дома из колодца…

  • Солнечные батареи для дома: стоимость комплекта,…
  • Что представляет собой насос Малыш. Какой выбрать…
  • Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

    Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

    Важно! Резистор ограничивает, но не стабилизирует ток.

    Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

    Теория

    Математический расчет

    Ниже представлена принципиальная электрическая схема в самом простом варианте. В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (U R) и на светодиоде (U LED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

    В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), R LED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

    Значение R LED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода. На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего R LED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

    Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора: U LED является паспортной величиной для каждого отдельного типа светодиодов.

    Графический расчет

    Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (U LED). В итоге все данные для расчета сопротивления получены.

    Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

    Рассчитаем резистор для светодиода с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (I max), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление: Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

    В каких случаях допускается подключение светодиода через резистор?

    Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

    Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

    Примеры расчетов сопротивления и мощности резистора

    Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

    Cree XM–L T6

    В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое U LED = 2,9 В и максимальное U LED = 3,5 В при токе I LED =0,7 А. В расчёты следует подставлять типовое значение U LED , так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

    Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

    Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

    Мощность, рассеиваемая резистором, составит:

    Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

    Вычислим КПД собранного светильника:

    Пример с LED SMD 5050

    По аналогии с первым примером разберемся, какой нужен резистор для . Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

    Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое U LED =3,3 В при токе одного чипа I LED =0,02 А. Ближайшее стандартное значение – 30 Ом.

    Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

    У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

    Онлайн-калькулятор

    Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.