Эл схема управления двигателем. Схемы управления электродвигателей. Схема управления двигателем с трех мест

Электродвигатели устройства для преобразования электрической энергии в механическую и наоборот, но это уже генераоры. Существует огромное разнобразие типов электромоторов, поэтому и схем управления электродвигателями существует великое множество. Рассмотрим некоторые из них

Там, где требуется плавное и точное регулирование скорости и вращающего момента электромотора в широких пределах, необходима схема управления двигателем постоянного тока


В основе этой радиолюбительской разработки лежит принцип работы следящего привода с одноконтурной системой регулирования. Схема конструкции состоит из следующих основных частей: - СИФУ, Регулятор,Защита

Оно может быть использовано для управления однофазными асинхронными двигателями, в частности, для пуска и торможения асинхронного двигателя с короткозамкнутым ротором малой мощности, имеющего пусковую обмотку или пусковой конденсатор, отключаемые до окончании пуска. Возможно использование устройства для пуска более мощных АД, а также для пуска трехфазных двигателей, работающие в однофазном режиме.

В другой простой схеме для управления однофазным асинхронным двигателем для пуска и торможения применяется электромагнитное реле, пусковой конденсатор типа МБГО-2 или МБГЧ, который включается и выключается контактами реле

Асинхронные однофазные электромоторы с пусковой обмоткой широко применяются в электроприводах различной бытовой техники (стиральные машины. компрессорные агрегаты холодильников), их используют для своих нужд радиолюбители.

Обладая известными достоинствами, такие электродвигатели требуют применения дополнительного устройства, обеспечивающего автоматическое подключение пусковой обмотки при включении, а также при остановке работы в случаях чрезмерного кратковременного увеличения нагрузки.

Многие радиолюбители нередко пытаются использовать трехфазный электродвигатель для различных радиолюбительских самоделок. Но вот беда - не каждый знает, как подключить трехфазный двигатель к однофазной сети. Среди различных способов запуска наиболее простой с подключением третьей обмотки через фазосдвигающий конденсатор, но не все двигатели хорошо работают от однофазной сети.

В радиолюбительской практике все нестандартные способы хороши, и так как у нас, руки развязаны, то и маломощные двигатели можно реверсировать переключателем ТП1 от старых ламповых телевизоров второго класса

Эта радиолюбительская разработка предназначена для регулировки и поддержания стабильной частоты вращения низковольтного двигателя мощностью от единиц ватт до 1000 ватт при U не более 20V. В качестве датчика частоты вращения используется датчик электронной системы зажигания автомобиля ВАЗ

Схема регулятора оборотов двигателя постоянного тока работает на принципах широтно-импульсной модуляции и применяется для изменения оборотов двигателя постоянного тока на 12 вольт.


Регулирование частоты вращения вала двигателя при помощи широтно-импульсной модуляции дает больший КПД, чем при применение простого изменения постоянного напряжения подаваемого на двигатель, хотя эти схемы мы тоже рассмотрим

Рассмотрена простая схема контроллера шагового двигателя, управляющая шаговым двигателем с помощью параллельный порт компьютера.


Шаговый двигатель используется для изготовлении печатных плат, микродрели, автоматической кормушки и в конструкциях роботомеханизированных аппаратов.

Обычно регулирование оборотов для двигателей на 220 вольт осуществляют с помощью тиристоров. Типовой схемой считается подсоединение электродвигателя в разрыв анодной цепи тиристора. Но во всех подобных схемах должен быть надежный контакт. И поэтому их нельзя применить в регулировании частоты вращения коллекторных двигателей, так как механизм щеток искусственно создает небольшие обрывы цепи.

Асинхронный электродвигатель нашел свое применение благодаря своей надежности, простоте и дешевизне. Чтобы продлить срок его эксплуатации и улучшить его параметры, необходимы дополнительный устройства, которые позволяют запускать регулировать и даже защищать двигатель.

Принципиальная электрическая схема управления асинхронным двигателем с помощью нереверсивного магнитного пускателя приведена на рисунке 4. Защита от самопроизвольного включения при восстановлении исчезнувшего напряжения осуществляется с помощью замыкающих блок-контактов, включенных параллельно кнопке SB2 (пуск). Защиту асинхронного двигателя от перегрузок недопустимой продолжительности выполняет тепловое реле KK, размыкающий контакт которого включен последовательно в цепь управления пускателем. Защита цепи от коротких замыканий здесь осуществляется предохранителями FU1; FU2; FU3. Для снятия напряжения при замене перегоревших плавких вставок установлен рубильник Q.

Рисунок 4 – Схема управления асинхронным короткозамкнутым электродвигателем с помощью магнитного пускателя и кнопочной станции
На рисунке 5 показана принципиальная электрическая схема управления асинхронным двигателем с двух мест с помощью двух кнопочных станций. Такая необходимость может возникнуть при управлении конвейером в длинных помещениях и в других случаях. Управлять асинхронным двигателем можно и с большего числа мест

Рисунок 5 – Схема управления электродвигателем с двух мест при наличии соответствующего количества кнопочных станций

Рисунок 6 – Схема управления асинхронным двигателем с помощью реверсивного магнитного пускателя:
а - силовая цепь; б - цепь управления с электрической блокировкой контактами магнитного пускателя и контактами кнопочной станции; в - цепь управления с электрической блокировкой контактами магнитного пускателя
Реверсивные магнитные пускатели комплектуются из двух нереверсивных. Они снабжаются механической блокировкой, исключающей одновременное включение двух контакторов, в результате которого могло бы произойти короткое замыкание. Электрические блокировки для предотвращения одновременного включения двух контакторов осуществляются с помощью размыкающих контактов КM1 и КM2 (рисунок 6, б).
Аналогичные электрические блокировки осуществляются также размыкающими контактами трех кнопочных станций (рисунок 6, в). Пусковые элементы этих станций («вперед» и «назад») имеют по два механически связанных замыкающих и размыкающих контакта. При нажатии на кнопку первым отключается размыкающий контакт, а затем включается замыкающий.

Типовые схемы релейно-контакторного управления асинхронными двигателями (АД) строятся по тем же принципам, что и схемы управления двигателями постоянного тока.

    1. Типовые схемы управления ад с короткозамкнутым ротором

Двигатели этого типа малой и средней мощности обычно пускаются прямым подключением к сети без ограничения пусковых токов. В этих случаях они управляются с помощью магнитных пускателей, которые одновременно обеспечивают и некоторые виды их защиты.

Схема управления асинхронным двигателем с использованием магнитного пускателя (рис. 2.1) включает в себя магнитный пускатель, состоящий из контактора КМ и трех встроенных в него тепловых реле защиты КК. Схема обеспечивает прямой (без ограничения тока и момента) пуск двигателя, отключение его от сети, а также защиту от коротких замыканий (предохранители F А) и перегрузки (тепловые реле КК).

Рис. 2.1. Схема управления АД с использованием

нереверсивного магнитного пускателя

Для пуска двигателя замыкают выключатель QF и нажимают кнопку пуска S В 1. Получает питание катушка контактора КМ, который, включившись, своими главными силовыми контактами в цепи статора двигателя подключает его к источнику питания, а вспомогательным контактом шунтирует кнопку S В1. Происходит разбег двигателя по его естественной характеристике. Для отключения двигателя нажимается кнопка остановки S В2, контактор КМ теряет питание и отключает двигатель от сети. Начинается процесс торможения двигателя выбегом под действием момента нагрузки на его валу.

    1. Реверсивная схема управления ад.

Основным элементом этой схемы является реверсивный магнитный пускатель, который включает в себя два линейных контактора КМ 1 и КМ 2 и два тепловых реле защиты КК (рис. 2.2). Схема обеспечивает прямой пуск и реверс двигателя, а также торможение противовключением при ручном (неавтоматическом) управлении.

Рис. 2.2. Схема управления АД с использованием реверсивного магнитного пускателя

В схеме предусмотрена защита от перегрузок двигателя (реле КК) и коротких замыканий в цепи статора (автоматический выключатель QF ) и управления (предохранители F А). Кроме того, схема управления обеспечивает и нулевую защиту от исчезновения (снижения) напряжения сети (контакторы КМ 1 и КМ 2).

Пуск двигателя при включенном QF в условных направлениях «Вперед» или «Назад» осуществляется нажатием соответственно кнопок S В1 или S В2. Это приводит к срабатыванию контактора КМ 1 или КМ 2, подключению двигателя к сети и его разбегу.

Для реверса или торможения двигателя вначале нажимается кнопка S В З, что приводит к отключению включенного до сих пор контактора (например, КМ 1), после чего нажимается кнопка S В 2.

Это приводит к включению контактора КМ 2 и подаче на АД напряжения источника питания с другим порядком чередования фаз. Магнитное поле двигателя изменяет свое направление вращения на противоположное, что приводит к началу процесса реверса. Этот процесс состоит из двух этапов: торможения противовключением и разбега в противоположную сторону.

В случае необходимости только торможения двигателя при достижении им нулевой частоты вращения должна быть вновь нажата кнопка S В З, что приведет к отключению двигателя от сети и возвращению схемы в исходное положение. Если кнопка S В З нажата не будет, то это приведет к разбегу двигателя в другую сторону, т.е. к его реверсу.

Во избежание короткого замыкания в цепи статора, которое может возникнуть в результате одновременного ошибочного нажатия кнопок S В 1 и S В 2, в реверсивных магнитных пускателях иногда предусматривается специальная механическая блокировка. Она представляет собой рычажную систему, которая предотвращает втягивание одного контактора, если включен другой. В дополнение к механической блокировке в схеме используется типовая электрическая блокировка, применяемая в реверсивных схемах управления. Она предусматривает перекрестное включение размыкающих контактов аппарата КМ 1 в цепь катушки аппарата КМ 2 и, наоборот.

Следует отметить, что повышению надежности и удобства в эксплуатации способствует использование в схеме воздушного автоматического выключателя QF . Его наличие исключает возможность работы привода при обрыве одной фазы, при однофазном коротком замыкании.

      Схема управления многоскоростным АД .

Эта схема (рис. 2.3) обеспечивает получение двух скоростей двигателя путем соединения секций (полуобмоток) обмотки статора в треугольник или двойную звезду, а также его реверсирование. Защита электропривода осуществляется тепловыми реле КК 1 и КК 2 и предохранителями F А.

Рис. 2.3. Схема управления двухскоростным АД

Для пуска двигателя на низкую частоту вращения нажимается кнопка S В 4, после чего срабатывает контактор КМ 2 и блокировочное реле К V . Статор двигателя оказывается включенным по схеме треугольника, а реле К V , замкнув свои контакты в цепях катушек аппаратов КМ З и КМ 4, подготавливает подключение двигателя к источнику питания. Далее нажатие кнопки S В 1 или S В 2 приводит к включению соответственно в направлении «Вперед» или «Назад».

После разбега двигателя до низкой частоты вращения может быть осуществлен его разгон до высокой частоты вращения. Для этого нажимается кнопка S В 5, что приведет к отключению контактора КМ 2 и включению контактора КМ 1, обеспечивающему переключение секций обмоток статора с треугольника на двойную звезду.

Остановка двигателя производится нажатием кнопки S В 3, что вызовет отключение всех контакторов от сети и торможение двигателя выбегом.

Применение в схеме двухцепных кнопок управления не допускает одновременного включения контакторов КМ 1 и КМ 2, КМ 3 и КМ 4. Этой же цели служит перекрестное включение размыкающих блок-контактов контакторов КМ 1 и КМ 2, КМ 3 и КМ 4 в цепи их катушек.

      Схема управления АД, обеспечивающая прямой пуск и динамическое торможение в функции времени

Пуск двигателя осуществляется нажатием кнопки S В 1 (рис. 2.4), после чего срабатывает линейный контактор КМ , подключающий двигатель к источнику питания. Одновременно с этим замыкание контакта КМ в цепи реле времени КТ вызовет его срабатывание и замыкание его контакта в цепи контактора торможения КМ 1. Однако последний не срабатывает, так как перед этим разомкнулся в этой цепи размыкающий контакт КМ.

Рис. 2.4. Схема управления пуском и динамическим торможением АД с короткозамкнутым ротором

Для остановки двигателя нажимается кнопка S В 2, Контактор КМ отключается, размыкая свои контакты в цепи статора двигателя и отключая тем самым его от сети переменного тока. Одновременно с этим замыкается контакт КМ в цепи аппарата КМ 1 и размыкается контакт КМ в цепи реле КТ. Это приводит к включению контактора торможения КМ 1, подаче в обмотки статора постоянного тока от выпрямителя V через резистор R т и переводу двигателя в режим динамического торможения.

Реле времени КТ, потеряв питание, начинает отсчет выдержки времени. Через интервал времени, соответствующий времени останова двигателя, реле КТ размыкает свой контакт в цепи контактора КМ 1, тот отключается, прекращая подачу постоянного тока в цепь статора. Схема возвращается в исходное положение.

Интенсивность динамического торможения регулируется резистором R т, с помощью которого устанавливается необходимый постоянный ток в статоре двигателя.

Для исключения возможности одновременного подключения статора к источникам переменного и постоянного тока в схеме использована типовая блокировка с помощью размыкающих контактов КМ и КМ 1, включенных перекрестно в цепи катушек этих аппаратов.

Типовые схемы управления АДс фазным ротором . Схемы управления двигателя с фазным ротором, которые рассчитаны в основном на среднюю и большую мощность, должны предусматривать ограничение токов при их пуске, реверсе и торможении с помощью добавочных резисторов в цепи ротора. За счет включения резисторов в цепь ротора можно также увеличить момент при пуске вплоть до уровня критического (максимального) момента.

      Схема одноступенчатого пуска АД в функции времени и торможения противовключением в функции ЭДС

После подачи напряжения включается реле времени КТ (рис. 2.5), ко­торое своим размыкающим контактом разрывает цепь питания контактора КМ 3, предотвращая тем самым его включение и преждевременное закорачивание пусковых резисторов в цепи ротора.

Рис.2.5. Схема управления пуском и торможением противовключением АД с фазным ротором

Включение двигателя производится нажатием кнопки S В 1, после чего включается контактор КМ 1. Статор двигателя подсоединяется к сети, электромагнитный тормоз Y В растормаживается, и начинается разбег двигателя. Включение КМ 1 одновременно приводит к срабатыванию контактора КМ 4, который своим контактом шунтирует ненужный при пуске резистор противовключения R д2 , а также разрывает цепь катушки реле времени КТ. Последнее, потеряв питание, начинает отсчет выдержки времени, после чего замыкает свой контакт в цепи катушки контактора КМ 3, который срабатывает и шунтирует пусковой резистор R д1 , в цепи ротора, и двигатель выходит на свою естественную характеристику.

Управление торможением обеспечивает реле торможения K V , контролирующее уровень ЭДС (частоты вращения) ротора. С помощью резистора R p , оно отрегулировано таким образом, что при пуске, когда скольжение двигателя 0 < s < 1, наводимая в роторе ЭДС будет недостаточна для включения, а в режиме противовключения, когда 1 < s < 2, уровень ЭДС достаточен для его включения.

Для осуществления торможения двигателя нажимается сдвоенная кнопка S В 2, размыкающий контакт которой разрывает цепь питания катушки контактора КМ 1. После этого двигатель отключается от сети и разрывается цепь питания контактора КМ 4 и замыкается цепь питания реле КТ. В результате этого контакторы КМ 3 и КМ 4 отключаются и в цепь ротора двигателя вводится сопротивление R д1 + R д2 .

Нажатие кнопки S В 2 приводит одновременно к замыканию цепи питания катушки контактора КМ 2, который, включившись, вновь подключает двигатель к сети, но уже с другим чередованием фаз сетевого напряжения на статоре. Двигатель переходит в режим торможения противовключением. Реле К V срабатывает и после отпускания, кнопки S В 2 будет обеспечивать питание контактора КМ 2 через свой контакт и замыкающий контакт этого аппарата.

В конце торможения, когда частота вращения будет близка к нулю и ЭДС ротора уменьшится, реле К V отключится и своим размыкающим контактом разомкнет цепь катушки контактора КМ 2. Последний, потеряв питание, отключит двигатель от сети, и схема придет в исходное состояние. После отключения КМ 2 тормоз Y В, потеряв питание, обеспечит фиксацию (торможение) вала двигателя.

      Схема одноступенчатого пуска АД в функции тока и динамического торможения в функции частоты вращения

Схема (рис. 2.6) включает в себя контакторы КМ 1, КМ2 и КМ 3; реле тока КА ; реле контроля частоты вращения SR , промежуточное реле KV ; понижающий трансформатор для динамического торможения Т ; выпрямитель VD . Максимальная токовая защита осуществляется предохранителями FA 1 и FA 2, защита от перегрузки двигателя – тепловыми реле КК 1 и КК 2.

Рис. 2.6. Схема управления пуском и динамическим торможением АД с фазным ротором

Схема работает следующим образом. После подачи с помощью автоматического выключателя QF напряжения для пуска двигателя нажимается кнопка S В 1, включается контактор КМ 1, силовыми контактами которого статор двигателя подключается к сети. Бросок тока в цепи ротора вызовет включение реле тока КА и размыкание цепи контактора ускорения КМ 2. Тем самым разбег двигателя начнется с пусковым резистором R д2 в цепи ротора.

Включение контактора КМ 1 приводит также к шунтированию кнопки S В 1, размыканию цепи катушки контактора торможения КМ 3 и включению промежуточного реле напряжения К V , что, тем не менее, не приведет к включению контактора КМ 2, так как до этого в этой цепи разомкнулся контакт реле КА.

По мере увеличения частоты вращения двигателя уменьшаются ЭДС и ток в роторе. При некотором значении тока в роторе, равном току отпускания реле КА , оно отключится и своим размыкающим контактом замкнет цепь питания контактора КМ 2. Тот включится, зашунтирует пусковой резистор R д2 , и двигатель выйдет на свою естественную характеристику.

Следует отметить, что вращение двигателя вызовет замыкание контакта реле частоты вращения SR в цепи контактора КМ 3, однако он не сработает, так как до этого разомкнулся контакт контактора КМ 1.

Для перевода двигателя в тормозной режим нажимается кнопка S В 2. Контактор КМ 1 теряет питание и отключает АД от сети переменного тока. Благодаря замыканию контактов КМ 1 включится контактор торможения КМ 3, контакты которого замкнут цепь питания обмотки статора от выпрямителя VD ), подключенного к трансформатору Т , и тем самым двигатель переводится в режим динамического торможения. Одновременно с этим потеряют питание аппараты К V и КМ 2, что приведет к вводу в цепь ротора резистора R д2 . Двигатель начинает тормозиться.

При частоте вращения двигателя, близкой к нулю, реле контроля частоты вращения SR разомкнет свой контакт в цепи катушки контактора КМ 3. Он отключится и прекратит торможение двигателя. Схема придет в исходное положение и будет готова к последующей работе.

Принцип действия схемы не изменится, если катушку реле тока КА включить в фазу статора, а не ротора.

Всем привет. Тема сегодняшней статьи это схема пуска асинхронного двигателя. Как по мне, то эта схема самая простоя, какая только может быть в электротехнике. В этой статье я вам приготовил две схемы. На первом рисунке будет схема с предохранителем для защиты цепей управления, а на втором будет без предохранителя. Отличие этих схем в том, что предохранитель служит как дополнительный элемент для защиты цепи от короткого замыкания и так же как защита от самопроизвольного включения. К примеру, если вам нужно выполнить какие-то работы на электроприводе, то вы разбираете электрическую схему путём выключения автомата и дополнительно ещё нужно вынуть предохранитель и после этого уже можно приступать к работе.

И так рассмотрим первую схему. Для увеличения картинки нажмите на неё.

Рисунок 1. Пуск асинхронного электродвигателя с короткозамкнутым ротором.

QF – любой автоматический выключатель.

KM – электромагнитный пускатель или контактор. Также этими буквами на картинке я обозначил катушку пускателя и блок-контакт пускателя.

SB1 – это кнопка стоп

SB2 – кнопка пуск

KK – любое тепловое реле, а также контакт теплового реле.

FU – предохранитель.

КК – тепловое реле, контакты теплового реле.

М – асинхронный двигатель.

Теперь опишем сам процесс запуска двигателя.

Всю эту схему можно условно разделить на силовую – это то что находится слева, и на схему управления – это то что находиться справа. Для начала на всю электрическую цепь нужно подать напряжение путём включения автомата QF. И напряжение подаются на неподвижные контакты пускателя и на цепь управления. Далее нажимаем кнопку пуска SB2, при этом действии напряжение подается на катушку пускателя и он втягивается и подаётся также напряжение на обмотки статора и электродвигатель начинает вращаться. Одновременно с силовыми контактами на пускателе замыкаются и блок-контакты КМ через которые подаётся напряжение на катушку пускателя и кнопку SB2 можно отпустить. На этом процесс запуска уже окончен, как Вы сами видите всё очень легко и просто.

Рисунок 2. Пуск асинхронного электродвигателя. В цепи управления нет предохранителя. Для увеличения картинки нажмите на неё.

Для того чтобы прекратить работу электродвигателя, достаточно всего лишь нажать на кнопку SB1. Этим действием мы разрываем цепь управления и прекращается подача напряжения на катушку пускателя, и силовые контакты размыкаются и как следствие пропадает напряжение на обмотках статора, и он останавливается. Останавливать так же легко, как и запускать.

Вот в принципе и вся схема пуска асинхронного двигателя. Если статья вам чем то помогла, то поделитесь нею в соц. сетях, а так же подпишитесь на обновления блога.

С уважением Семак Александр!

В настоящее время наиболее распространены трехфазные асинхронные двигатели с короткозамкнутым ротором. Пуск и остановка таких двигателей при включении на полное напряжение сети осуществляются дистанционно при помощи магнитных пускателей.

Наиболее часто используется схема с одним пускателем и "Пуск" и "Стоп". Для того, чтобы обеспечить вращение вала двигателя в обе стороны используется схема с двумя пускателями (или с реверсивным пускателем) и тремя кнопками. Такая схема позволяет менять направление вращения вала двигателя "на ходу" без его предварительной остановки.

Схемы пуска двигателя

Электрический двигатель М питается от трехфазной сети переменного напряжения. Трехфазный автоматический выключатель QF предназначен для отключения схемы при коротком замыкании. Однофазный автоматический выключатель SF защищает цепи управления.

Основным элементом магнитного пускателя является контактор (мощное реле для коммутации больших токов) КМ. Его силовые контакты коммутируют три фазы, подходящие к электродвигателю. Кнопка SB1 ("Пуск") предназначена для пуска двигателя, а кнопка SB2 ("Стоп") - для остановки. Тепловые биметаллические реле KK1 и КК2 осуществляют отключение схемы при превышении тока, потребляемого электродвигателем.


Рис. 1. Схема пуска трехфазного асинхронного двигателя с помощью магнитного пускателя

При нажатии кнопки SB1 контактор КМ срабатывает и контактами KM.1, КМ.2, КМ.3 подключает электродвигатель к сети, а контактом КМ.4 блокирует кнопку (самоблокировка).

Для остановки электродвигателя достаточно нажать кнопку SB2, при этом контактор КМ отпускает и отключает электродвигатель.

Важным свойством магнитного пускателя является то, что при случайном пропадании напряжения в сети двигатель отключается, но восстановление напряжения в сети не приводит к самопроизвольному запуску двигателя, так как при отключении напряжения отпускает контактор КМ, и для повторного включения необходимо нажать кнопку SB1.

При неисправности установки, например, при заклинивании и остановке ротора двигателя, ток, потребляемый двигателем, возрастает в несколько раз, что приводит к срабатыванию тепловых реле, размыканию контактов KK1, КК2 и отключению установки. Возврат контактов КК в замкнутое состояние производится вручную после устранения неисправности.

Реверсивный магнитный пускатель позволяет не только запускать и останавливать электрический двигатель, но изменять направление вращения ротора. Для этого схема пускателя (рис. 2) содержит два комплекта контакторов и кнопок пуска.


Рис. 2. Схема пуска двигателя с помощью реверсивного магнитного пускателя

Контактор КМ1 и кнопка SB1 с самоблокировкой предназначены для включения двигателя в режиме "вперед", а контактор КМ2 и кнопка SB2 включают режим "назад". Для изменения направления вращения ротора трехфазного двигателя достаточно поменять местами любые две из трех фаз питающего напряжения, что и обеспечивается основными контактами контакторов.

Кнопка SB3 предназначена для остановки двигателя, контакты КМ 1.5 и КМ2.5 осуществляют взаимоблокировку, а тепловые реле КК1 и КК2 - защиту при превышении тока.

Включение двигателя на полное напряжение сети сопровождается большими пусковыми токами, что может быть недопустимо для сети ограниченной мощности.

Схема пуска электродвигателя с ограничением пускового тока (рис. 3) содержит резисторы R1, R2, R3, включенные последовательно с обмотками электродвигателя. Эти резисторы ограничивают ток в момент пуска при срабатывании контактора КМ после нажатия кнопки SB1. Одновременно с КМ при замыкании контакта КМ.5 срабатывает реле времени КТ.

Выдержка, осуществляемая реле времени, должна быть достаточной для разгона электродвигателя. По окончании времени выдержки замыкается контакт КТ, срабатывает реле К и своими контактами K.1, К.2, К.3 шунтирует пусковые резисторы. Процесс пуска завершен, на двигатель подается полное напряжение.


Рис. 3. Схема пуска двигателя с ограничением пускового тока

Далее будут рассмотрены две наиболее популярных схемы торможения трехфазных асинхронных двигателей с короткозамкнутым ротором: схема динамического торможения и схема торможения противовключением.

Схемы торможения двигателя

После снятия напряжения с двигателя его ротор какое-то время продолжает вращаться за счет инерции. В ряде устройств, например, в подъемно-транспортных механизмах, требуется осуществлять принудительное торможение для уменьшения величины выбега. Динамическое торможение заключается в том, что после снятия переменного напряжения через обмотки электродвигателя пропускается постоянный ток.

Схема динамического торможения показана на рис. 4.

Рис. 4. Схема динамического торможения двигателя

В схеме, помимо основного контактора КМ, присутствует реле К, включающее режим торможения. Поскольку реле и контактор не могут быть включены одновременно, применена схема взаимоблокировки (контакты КМ.5 и К.3).

При нажатии кнопки SB1 срабатывает контактор КМ, подает питание на двигатель (контакты КМ.1 КМ.2, КМ.3), блокирует кнопку (КМ.4) и блокирует реле К (КМ.5). Замыкание КМ.6 вызывает срабатывание реле времени КТ и замыкание контакта КТ без выдержки времени. Таким образом осуществляется пуск двигателя.

Для остановки двигателя следует нажать кнопку SB2. Контактор КМ отпускает, размыкаются контакты KM.1 - KM.3, отключая двигатель, замыкает контакт КМ.5, что вызывает срабатывание реле К. Контакты K.1 и К.2 замыкаются, подавая постоянный ток в обмотки. Происходит быстрое торможение.

При размыкании контакта КМ.6 реле времени КТ отпускает, начинается выдержка времени. Величина выдержки должна быть достаточна для полной остановки электродвигателя. По окончании выдержки времени контакт КТ размыкается, реле К отпускает и снимает постоянное напряжение с обмоток электродвигателя.

Наиболее эффективным способом торможения является реверсирование двигателя, когда сразу после снятия питания на электродвигатель подается напряжение, вызывающее появление встречного вращающего момента. Схема торможения противовключением приведена на рис. 5.


Рис. 5. Схема торможения двигателя противовключением

Частота вращения ротора двигателя контролируется с помощью реле частоты вращения с контактом SR. Если частота вращения больше некоторого значения, контакт SR замкнут. При остановке двигателя контакт SR размыкается. Кроме контактора прямого включения KM1 схема содержит контактор для реверсирования КМ2.

При пуске двигателя срабатывает контактор KM1 и контактом КМ 1.5 разрывает цепь катушки КМ2. С достижением определенной частоты вращения замыкается контакт SR подготавливая цепь для включения реверса.

При останове двигателя контактор KM1 отпускает и замыкает контакт КМ1.5. В результате этого контактор КМ2 срабатывает и подает на электродвигатель реверсирующее напряжение для торможения. Снижение частоты вращения ротора вызывает размыкание SR, контактор КМ2 отпускает, торможение прекращается.